Patents and Designs Journal

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications filed</td>
<td>5</td>
</tr>
<tr>
<td>Applications accepted</td>
<td>142</td>
</tr>
<tr>
<td>Patents granted</td>
<td>472</td>
</tr>
<tr>
<td>Patents renewed</td>
<td>472</td>
</tr>
<tr>
<td>Patents not in force</td>
<td>473</td>
</tr>
<tr>
<td>Patents renewed for 20 years</td>
<td>473</td>
</tr>
<tr>
<td>Changes in particulars entered in register</td>
<td>478</td>
</tr>
<tr>
<td>Country codes</td>
<td>488</td>
</tr>
<tr>
<td>Indices of applications accepted</td>
<td>459</td>
</tr>
<tr>
<td>Designs</td>
<td></td>
</tr>
<tr>
<td>Designs registered</td>
<td>440</td>
</tr>
<tr>
<td>Designs renewed</td>
<td>457</td>
</tr>
<tr>
<td>Designs void</td>
<td>458</td>
</tr>
</tbody>
</table>

1. Page: 1

May 31, 2010
GENERAL INFORMATION

Letters, documents, etc. concerning Patents and Designs should be addressed to:
The Patent Authority, Jerusalem Technology Park, Building5, Malcha, Jerusalem.
Fees to the Patent Office can be accepted only by payment to the Postal Bank Account of the Authority, No. 0-24145-2. The receipt of the Postal Bank must be presented to the office together with the application for the action for which the fee has been paid.

Copyright by the State of Israel. No Extracts may be published except with the permission of the Patent Office.
PATENTS

NOTICE UNDER SECTION 16 OF THE PATENTS LAW, 5727-1967

In the following there are listed new applications complying with the provisions of rule 32(a) of the Patent Regulations, 5728-1968:

Particulars of the applications are given in the following order:
- Number and date of application and the first four symbols of the International Classification.
- Title of invention (as proposed by applicant)
- Applicant
- Priority right: Convention country-
 Number and date of Foreign application
- International Application Number
- International Publication Number

<table>
<thead>
<tr>
<th>Number and date of application and the first four symbols of the International Classification</th>
<th>Title of invention (as proposed by applicant)</th>
<th>Applicant</th>
<th>Priority right: Convention country-</th>
<th>Number and date of Foreign application</th>
<th>International Application Number</th>
<th>International Publication Number</th>
</tr>
</thead>
</table>

May 31, 2010
<table>
<thead>
<tr>
<th>Date</th>
<th>Number</th>
<th>Code</th>
<th>Description</th>
<th>Inventor</th>
<th>Country</th>
<th>Filing Date</th>
<th>Priority Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/07/2009</td>
<td>200126</td>
<td>A61K</td>
<td>NEW PROCESS FOR OBTAINING THE CRYSTALLINE FORM V OF AGOMELATINE</td>
<td>LES LABORATOIRES SERVIER</td>
<td>FR</td>
<td>08/04466</td>
<td>05/08/2008</td>
</tr>
<tr>
<td>28/07/2009</td>
<td>200127</td>
<td>C07B</td>
<td>NEW PROCESS FOR THE SYNTHESIS OF AGOMELATINE</td>
<td>LES LABORATOIRES SERVIER</td>
<td>FR</td>
<td>08/04463</td>
<td>05/08/2008</td>
</tr>
<tr>
<td>29/07/2009</td>
<td>200137</td>
<td>C07B</td>
<td>NEW PROCESS FOR THE SYNTHESIS OF AGOMELATINE</td>
<td>LES LABORATOIRES SERVIER</td>
<td>FR</td>
<td>08/04465</td>
<td>05/08/2008</td>
</tr>
</tbody>
</table>
03/02/2008 200175 A61K (2010.01)
METHOD FOR PREPARING PARTICLES COMPRISING METAL OXIDE COATING AND PARTICLES WITH METAL OXIDE COATING
SOL-GEL TECHNOLOGIES LTD.
US 60/898700 01/02/2007
PCT/IL/2008/00141
WO/2008/093347

02/08/2009 200202 C07K (2010.01)
NOVEL PROTEINS TWO TO BIOTECH LTD

05/08/2009 200249 A61K (2010.01)
PARMACEUTICAL COMPOSITION CONTAINING NATURAL MEDICINAL COMPONENTS INTENDED FOR TREATMENT OF PSORIASIS AND ULCUS TROFI
GALINA KANTER

06/08/2009 200284 C23C (2010.01)

May 31, 2010
<table>
<thead>
<tr>
<th>Date</th>
<th>Patent No.</th>
<th>Classification</th>
<th>Inventor(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/08/2009</td>
<td>200309</td>
<td>C22B</td>
<td>HCL CLEANTECH LTD.</td>
<td>A PROCESS FOR THE RECOVERY OF A METAL ChLORIDE FROM AN AQUEOUS SOLUTION THEREOF.</td>
</tr>
<tr>
<td>12/08/2009</td>
<td>200352</td>
<td>G01N</td>
<td>GKSS-FORSCHUNGSZENTRUM GEESTHACHT GMBH</td>
<td>CREEP-RESISTANT MAGNESIUM ALLOY.</td>
</tr>
<tr>
<td>12/08/2009</td>
<td>200359</td>
<td>B07B</td>
<td>SENG ENTERPRISES LTD.</td>
<td>PARTICLE SEPARATION.</td>
</tr>
<tr>
<td>12/08/2009</td>
<td>200366</td>
<td>B01D</td>
<td>LIF ESCAN SCOTLAND LTD.</td>
<td>ANALYTE TESTING METHOD AND SYSTEM.</td>
</tr>
<tr>
<td>May 31, 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METHOD AND SYSTEM FOR SEEDING WITH MATURE FLOC TO ACCELERATE AGGREGATION IN A WATER TREATMENT PROCESS
PALO ALTO RESEARCH CENTER, INCORPORATED
US 12/234373 19/09/2008

NOVEL DERIVATIVES OF PSAMMAPLIN A, A METHOD FOR THEIR SYNTHESIS AND THEIR USE FOR THE PREVENTION OR TREATMENT OF CANCER
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
EP 07290253.9 28/02/2007
PCT/IB/2008/001887
WO/2008/125988

SOIL DISINFECTION USING DIDECYL-DIMETHYL AMMONIUM BROMIDE
YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM
18/08/2009 200451 A01G (2010.01)

METHOD AND DOSAGE REGIMENS FOR ELIMINATING A CHEMICAL SUBSTANCE IN BLOOD
20/08/2009 200509 A61K (2010.01)

METHOD AND SYSTEM FOR SEEDING WITH MATURE FLOC TO ACCELERATE AGGREGATION IN A WATER TREATMENT PROCESS
PALO ALTO RESEARCH CENTER, INCORPORATED
US 12/234373 19/09/2008

NOVEL DERIVATIVES OF PSAMMAPLIN A, A METHOD FOR THEIR SYNTHESIS AND THEIR USE FOR THE PREVENTION OR TREATMENT OF CANCER
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
EP 07290253.9 28/02/2007
PCT/IB/2008/001887
WO/2008/125988

SOIL DISINFECTION USING DIDECYL-DIMETHYL AMMONIUM BROMIDE
YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM
18/08/2009 200451 A01G (2010.01)

METHOD AND DOSAGE REGIMENS FOR ELIMINATING A CHEMICAL SUBSTANCE IN BLOOD
20/08/2009 200509 A61K (2010.01)
METHOD AND APPARATUS FOR THE SURFACE MODIFICATION OF FLAT SUBSTRATES

RENA GMBH
DE 102007024667.8 25/05/2007
PCT/EP/2008/004053 WO/2008/145285

SOLAR ENERGY SYSTEM
SOLAR & ENVIRONMENTAL TECHNOLOGIES CORP.
US 11/682407 06/03/2007
PCT/US/2008/056049 WO/2008/109746

METHOD AND DEVICE FOR FIRED INTERMEDIATE OVERHEATING DURING DIRECT SOLAR VAPOURISATION IN A SOLAR THERMAL POWER STATION
SIEMENS AKTIENGESELLSCHAFT
DE 102007013852.2 20/03/2007
<table>
<thead>
<tr>
<th>Publication Date</th>
<th>Patent Number</th>
<th>Classification</th>
<th>Title</th>
<th>Inventor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/03/2008</td>
<td>201190</td>
<td>A61B (2010.01)</td>
<td>HYBRID STENT HAVING A FIBER OR WIRE BACKBONE</td>
<td>MEDINOL LTD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US 11/729516 28/03/2007</td>
</tr>
<tr>
<td>28/03/2008</td>
<td>201207</td>
<td>F24J (2010.01)</td>
<td>INFLATABLE SOLAR COLLECTOR</td>
<td>HELIOVIS AG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AT A 512/2007 30/03/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCT/AT/2008/000117 WO/2008/119094</td>
</tr>
<tr>
<td>15/10/2003</td>
<td>201208</td>
<td>C12N (2010.01)</td>
<td>SITE SPECIFIC INCORPORATION OF KETO AMINO ACIDS INTO PROTEINS</td>
<td>THE SCRIPPS RESEARCH INSTITUTE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US 60/419265 16/10/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US 60/420990 23/10/2002</td>
</tr>
<tr>
<td>11/04/2008</td>
<td>201209</td>
<td>C07D (2010.01)</td>
<td>PYRIDO [2, 3 - D] PYRIMIDIN - 7 - ONE COMPOUNDS AS INHIBITORS OF PI3K - ALPHA FOR THE TREATMENT OF CANCER</td>
<td>EXELIXIS, INC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US 60/911160 11/04/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCT/US/2008/004807 WO/2008/127712</td>
</tr>
</tbody>
</table>
15/11/2004 201210 C07D (2010.01)

A2B ADENOSINE RECEPTOR ANTAGONISTS
GILEAD PALO ALTO, INC.
US 10/719102 21/11/2003

08/04/2008 201211 A61K (2010.01)

COMBINATION THERAPIES COMPRISING QUINOXALINE INHIBITORS OF PI3K-ALPHA FOR USE IN THE TREATMENT OF CANCER
EXELIXIS, INC.
US 60/923164 11/04/2007
PCT/US/2008/004570 WO/2008/127594

08/04/2008 201212 H04L (2010.01)

A METHOD FOR MOBILITY MANAGEMENT IN A SYSTEM ARCHITECTURE SUPPORTING MOBILITY BETWEEN DIFFERENT ACCESS SYSTEMS
ALCATEL LUCENT EP 07290450.1 12/04/2007

28/03/2008 201213 E05B (2010.01)

KEY BLANK AND KEY MEDECO SECURITY LOCKS, INC.

May 31, 2010
US 11/694097 30/03/2007
PCT/US/2008/004078
WO/2008/121336

31/03/2008 201214 G06Q (2010.01)
DETERMINING ADVERTISING CONVERSION
GOOGLE INC.
US 11/694635 30/03/2007
PCT/US/2008/058906
WO/2008/121962

27/03/2008 201215 H04L (2010.01)
METHOD AND APPARATUS FOR INDICATING A TEMPORARY BLOCK FLOW TO WHICH A PIGGYBACKED ACKNOWLEDGEMENT/NON-ACKNOWLEDGEMENT FIELD IS ADDRESSED
INTERDIGITAL TECHNOLOGY CORPORATION
US 60/908535 28/03/2007
US 60/945057 19/06/2007
US 60/944982 19/06/2007
US 60/945034 19/06/2007
US 60/956765 20/08/2007
PCT/US/2008/004003
WO/2008/121299

07/03/2008 201216 C11B (2010.01)
AN INTEGRATED PROCESS FOR THE PREPARATION OF FATTY ACID METHYL ESTER (BIOFUEL)
RELIANCE LIFE SCIENCES PVT. LTD.
IN 654/MUM/2007 30/03/2007
PCT/IN/2008/000128
WO/2008/120223

May 31, 2010

"ז"ז בע"ז ת"ש"וי-2010"
GENETIC VARIANTS ON CHR2 AND CHR16 AS MARKERS FOR USE IN BREAST CANCER RISK ASSESSMENT, DIAGNOSIS, PROGNOSIS AND TREATMENT

DECODE GENETICS EHF.

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Application Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 8625</td>
<td>26/03/2007</td>
</tr>
<tr>
<td>IS 8648</td>
<td>25/05/2007</td>
</tr>
</tbody>
</table>

MEDICAL DEVICE FOR TREATING A HEART VALVE INSUFFICIENCY OR STENOSIS

JENA VALVE TECHNOLOGY INC.

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Application Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 2007 005</td>
<td>13/04/2007</td>
</tr>
<tr>
<td>EP 07009728.2</td>
<td>15/05/2007</td>
</tr>
<tr>
<td>EP 07110318.8</td>
<td>14/06/2007</td>
</tr>
<tr>
<td>US 11/812095</td>
<td>14/06/2007</td>
</tr>
</tbody>
</table>

PARABOLIC TROUGH COLLECTOR

AMATON SA

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Application Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 2007 015</td>
<td>30/03/2007</td>
</tr>
<tr>
<td>DE 026 2007 10</td>
<td>05/06/2007</td>
</tr>
</tbody>
</table>

F24J (2010.01)

C12Q (2010.01)

A61F (2010.01)

F24J201219

WO/2008/117314

WO/2008/125153

WO/2008/119435

WO/2008/117311
<table>
<thead>
<tr>
<th>Date</th>
<th>Application Title</th>
<th>Applicant</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/04/2008</td>
<td>APPARATUS FOR STABILIZING AND TUNING THE BANDWIDTH OF LASER LIGHT</td>
<td>CYMER, INC</td>
</tr>
<tr>
<td>29/09/2009</td>
<td>BI-ROTOR GENERATOR FOR EFFICIENT PRODUCTION OF AC ELECTRICITY</td>
<td>RE-10 LTD</td>
</tr>
<tr>
<td></td>
<td>(2010.01) H02K</td>
<td>29/09/2009</td>
</tr>
<tr>
<td>29/09/2009</td>
<td>TAPERED HOLLOW HELICAL TURBINE FOR ENERGY TRANSDUCTION</td>
<td>RE-10 LTD</td>
</tr>
<tr>
<td></td>
<td>(2010.01) F01D</td>
<td>29/09/2009</td>
</tr>
<tr>
<td>03/04/2008</td>
<td>METHOD FOR EVALUATING THE COMPOSITION OF A CELL CULTURE AND CELL PHENOTYPE</td>
<td>GENZYME CORPORATION</td>
</tr>
<tr>
<td></td>
<td>(2010.01) G01N</td>
<td>US 60/910574 06/04/2007</td>
</tr>
</tbody>
</table>
07/03/2008 201226 A61K (2010.01)
COMPOSITIONS CONTAINING KAPPA-OPIATE AGONISTS FOR USE IN THE TREATMENT OF DIARRHEA-PREDOMINANT AND ALTERNATING IRRITABLE BOWEL SYNDROME
TOI GA PHARMACEUTICALS INC.
US 60/920841 30/03/2007
PCT/US/2008/056317
WO/2008/121496

28/03/2008 201227 C07K (2010.01)
STITCHED POLYPEPTIDES
PRESIDENT AND FELLOWS OF HARVARD COLLEGE
US 60/908566 28/03/2007
PCT/US/2008/058575
WO/2008/121767

27/03/2008 201228 C12P (2010.01)
METHODS OF GENE AMPLIFICATION AND EXPRESSION
MEDAREX, INC.
US 60/908529 28/03/2007
PCT/US/2008/058436
WO/2008/121711

28/03/2008 201229 C07D (2010.01)
ACETONE SOLVATE OF PHTHALOYL AMLODIPINE

May 31, 2010

PCT/US/2008/059275
WO/2008/124508
ESTEVE QUIMICA, S.A.
EP 07380086.4 30/03/2007
PCT/EP/2008/053737
WO/2008/119759

31/03/2008 201230 G06F 2010.01
SYSTEM AND METHOD FOR WIKIFYING CONTENT FOR KNOWLEDGE NAVIGATION AND DISCOVERY
KNEWCO, INC.
US 60/909072 30/03/2007
US 61/064211 21/02/2008
US 61/064345 29/02/2008
US 61/064670 19/03/2008
US 61/064780 26/03/2008
PCT/US/2008/004151
WO/2008/121377

28/03/2008 201231 C07H 2010.01
RECOMBINANT EXPRESSION VECTOR ELEMENTS (REVES) FOR ENHANCING EXPRESSION OF RECOMBINANT PROTEINS IN HOST CELLS
ABBOTT LABORATORIES
US 60/921141 30/03/2007
PCT/US/2008/004063
WO/2008/121324

31/03/2008 201232 G06F 2010.01
DATA STRUCTURE, SYSTEM AND METHOD FOR KNOWLEDGE NAVIGATION AND DISCOVERY
KNEWCO, INC.
US 60/909072 30/03/2007
US 61/064211 21/02/2008

May 31, 2010
<table>
<thead>
<tr>
<th>Application Date</th>
<th>Publication Number</th>
<th>Class</th>
<th>Summary Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/03/2008</td>
<td>201234</td>
<td>A01N (2010.01)</td>
<td>ADENOSINE A2A RECEPTOR ANTAGONISTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A2A אננטוגניסטים ל-A2A ריכוזים</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KING PHARMACEUTICALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RESEARCH & DEVELOPMENT, INC.</td>
</tr>
<tr>
<td>US 61/064345</td>
<td></td>
<td></td>
<td>US 60/099106</td>
</tr>
<tr>
<td>29/02/2008</td>
<td></td>
<td></td>
<td>US 12/056403</td>
</tr>
<tr>
<td>19/03/2008</td>
<td></td>
<td></td>
<td>US 12/056423</td>
</tr>
<tr>
<td>26/03/2008</td>
<td></td>
<td></td>
<td>PCT/US/2008/004161</td>
</tr>
<tr>
<td>WO/2008/121382</td>
<td></td>
<td></td>
<td>WO/2008/121748</td>
</tr>
<tr>
<td>03/04/2008</td>
<td>201235</td>
<td>C07D (2010.01)</td>
<td>THERAPEUTIC AGENTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>תרופים רפואיים</td>
</tr>
<tr>
<td>MERCK SHARP & DOHME CORP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 60/921759</td>
<td></td>
<td></td>
<td>PCT/US/2008/004336</td>
</tr>
<tr>
<td>04/04/2009</td>
<td></td>
<td></td>
<td>WO/2008/124030</td>
</tr>
<tr>
<td>28/03/2008</td>
<td>201237</td>
<td>G06F (2010.01)</td>
<td>METHODS AND SYSTEMS FOR INTERNET SECURITY VIA VIRTUAL SOFTWARE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ת萘ית ומערכת לאבטחת באמצעות דך</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MURPHY, CHRISTOPHER</td>
</tr>
<tr>
<td>US 60/920613</td>
<td></td>
<td></td>
<td>PCT/US/2008/004105</td>
</tr>
<tr>
<td>29/03/2007</td>
<td></td>
<td></td>
<td>WO/2008/121345</td>
</tr>
</tbody>
</table>
04/03/2008 201238 H05B (2010.01)
INDUCTIVE LOAD SENSOR FOR DIMMER CIRCUIT
MASCO CORPORATION
US 11/696772 05/04/2007
PCT/US/2008/055765 WO/2008/124225

26/03/2008 201239 C07H (2010.01)
NUCLEOSIDE PHOSPHORRAMIDATE PRODRUGS
PHARMASSET, INC.
US 60/909315 30/03/2007
US 60/982309 24/10/2007
US 12/053015 21/03/2008
PCT/US/2008/058183 WO/2008/121634

06/03/2008 201240 B01D (2010.01)
CYCLONIC FLUID SEPARATOR
TWISTER B.V.
EP 07104888.8 26/03/2007

25/03/2008 201241 C07K (2010.01)
IMPROVED VACCINES AGAINST BORDETELLA PERTUSSIS BASED ON LPS GLYCOSYLTRANSFERASE MUTANTS
DE STAAT DER NEDERLANDEN, VERTEGENWOORDIGD DOOR DE MINISTER VAN VOLKSGEZONDHEID, WELZIJN EN SPORT
EP 07104885.4 26/03/2007

May 31, 2010
POLYNUCLEOTIDES, POLYPEPTIDES AND METHODS FOR INCREASING OIL CONTENT, GROWTH RATE AND BIOMASS OF PLANTS
EVOGENE LTD.
US 60/907568 09/04/2007
PCT/IL/2008/000489
WO/2008/122980

ANTIBODIES, METHODS AND KITS FOR DIAGNOSING AND TREATING MELANOMA
TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD.
US 60/907343 29/03/2007
US 60/924549 21/05/2007
PCT/IL/2008/000436
WO/2008/120202

WASHING, STERILIZING, DISPENSING AND CLOSING DEVICE FOR BABY BOTTLE AND ITS COMPONENTS
AMIR LANIADO
US 60/907443 02/04/2007
US 60/946412 27/06/2007
PCT/IL/2008/000427
WO/2008/120197
AN IMPROVED PROCESS FOR THE SYNTHESIS OF SOLIFENACIN
MEDICHEM, S.A.
US 60/921027 30/03/2007
US 60/928199 08/05/2007
PCT/IB/2008/000749
WO/2008/120080

A SKIN RESURFACING DEVICE
MICHAEL SLATKINE

COMBINATIONS OF STATINS AND ANTI-OBESEITY AGENT
SCIDOSE LLC.
US 60/922454 09/04/2007
PCT/US/2008/004492
WO/2008/124120

18F - LABELLED FOLATES
MERCK EPROVA AG
EP 07105976.0 11/04/2007
PCT/EP/2008/054404
WO/2008/125613
<table>
<thead>
<tr>
<th>Date</th>
<th>Application Number</th>
<th>Details</th>
</tr>
</thead>
</table>
A TRANSITION METAL CATALYZED SYNTHESIS OF N-AMINOINDOLES
SANOFI AVENTIS
EP 07007585.8 13/04/2009
PCT/EP/2008/002519
WO/2008/125207

5-OXO-ISOXAZOLES AS INHIBITORS OF LIPASES AND PHOSPHOLIPASES
SANOFI AVENTIS
EP 07007251.7 05/04/2007
PCT/EP/2008/002314
WO/2008/122357

IMIDAZOLIDINE CARBOXAMIDE DERIVATIVES AS LIPASE AND PHOSPHOLIPASE INHIBITORS
SANOFI AVENTIS
EP 07007161.8 05/04/2007
PCT/EP/2008/002231
WO/2008/122352

METERED-DOSE INHALER
IVAX PHARMACEUTICALS IRELAND
US 60/921320 02/04/2007
GB 0706999.0 11/04/2007
PCT/EP/2008/002590
WO/2008/119552
26/02/2008 201257
MECHANISM FOR EXECUTING SERVER DISCOVERY
NOKIA CORPORATION
PCT/EP/2008/052282
WO/2008/125378

02/04/2008 201258
METHODS OF DETECTING CANCER CELLS AND USE OF SAME FOR DIAGNOSING AND MONITORING TREATMENT OF THE DISEASE
RAMOT AT TEL-AVIV UNIVERSITY LTD.
US 60/097441 02/04/2007
PCT/IL/2008/000457
WO/2008/120216

31/03/2008 201259
COATING INNOVATIVE MATERIALS TECHNOLOGIES INC
US 60/090966 30/03/2007
PCT/CA/2008/000598
WO/2008/119173

01/04/2007 201260
METHOD AND SYSTEM FOR THREE-DIMENSIONAL FABRICATION
OBJET GEOMETRIES LTD.
<table>
<thead>
<tr>
<th>Publication Date</th>
<th>Application Number</th>
<th>Classification</th>
<th>Title</th>
<th>Inventor(s)</th>
<th>Application Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/04/2008</td>
<td>201261</td>
<td>C07D</td>
<td>ATROPISOMER OF PYRROLE DERIVATIVES, COMPOSITIONS COMPRISING THE SAME AND USES THEREOF</td>
<td>DAIICHI SANKYO COMPANY, LIMITED</td>
<td>09/04/2007</td>
<td>2010.01</td>
</tr>
<tr>
<td>04/04/2008</td>
<td>201262</td>
<td>A61K</td>
<td>GONADOTROPIN-RELEASING HORMONE RECEPTOR ANTAGONISTS AND USES THEREOF</td>
<td>NEUROCRINE BIOSCIENCES, INC.</td>
<td>06/04/2007</td>
<td>2010.01</td>
</tr>
<tr>
<td>05/03/2008</td>
<td>201263</td>
<td>C10G</td>
<td>PROCESS AND APPARATUS FOR PARA-XYLENE PRODUCTION</td>
<td>EXXONMOBIL CHEMICAL PATENTS INC.</td>
<td>04/04/2007</td>
<td>2010.01</td>
</tr>
</tbody>
</table>
NEURAMINIC ACID DERIVATIVES AND METHODS OF MANUFACTURING THE SAME
DAIICHI SANKYO COMPANY, LIMITED
PCT/JP/2008/057557
WO/2008/126943

07/04/2008 201265 G01S (2010.01)
METHOD AND DUAL LASER DEVICE FOR DETECTING MAGNIFYING OPTICAL SYSTEMS
COMPAGNIE INDUSTRIELLE DES LASERS CILAS
FR 07/02630 11/04/2007
PCT/FR/2008/000485
WO/2008/142270

07/04/2008 201266 G01S (2010.01)
METHOD AND SINGLE LASER DEVICE FOR DETECTING MAGNIFYING OPTICAL SYSTEMS
COMPAGNIE INDUSTRIELLE DES LASERS CILAS
FR 07/02629 11/04/2007
PCT/FR/2008/000484
WO/2008/142269

17/03/2008 201268 C11D (2010.01)
LIQUID DETERGENT WITH REFRACTIVE PARTICLE
COLGATE-PALMOLIVE COMPANY
US 60/909574 02/04/2007
US 12/024200 01/02/2008
PCT/US/2008/057200

24 May 31, 2010
 invalidate if it's not correct
<table>
<thead>
<tr>
<th>Publication Date</th>
<th>Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/04/2008</td>
<td>201269</td>
<td>METHODS AND COMPOSITIONS FOR REDUCTION OF SIDE EFFECTS OF THERAPEUTIC TREATMENTS</td>
</tr>
<tr>
<td>01/10/2009</td>
<td>201270</td>
<td>A VEHICULAR SAFETY DISTANCE ALERTING SYSTEM</td>
</tr>
<tr>
<td>01/10/2009</td>
<td>201271</td>
<td>MEDICAL SLEEPING PILLOW</td>
</tr>
<tr>
<td>01/10/2009</td>
<td>201272</td>
<td>CUTTING INSERT AND METHOD OF MANUFACTURE THEREOF</td>
</tr>
</tbody>
</table>

WO/2008/121541

WO/2008/122049

PCT/US/2008/059174

US 60/099637 02/04/2007

US 60/056296 16/08/2007

US 60/056657 17/08/2007
AUXILIARY HANDLE FOR TOOLS
ALEHUALE, S.L.
ES U- 200700779 04/04/2007
PCT/ES/2008/000209 WO/2008/122684

SYSTEM AND METHOD FOR DETERMINING THE KOSHER STATUS OF FISH
WINTERLAB LIMITED US 60/923379 13/04/2007
PCT/US/2008/004836

AN OBJECT ATTACHER AND A METHOD FOR ATTACHING A MOVABLE OBJECT
MOSHE RAZ COHEN

AN OBJECT ATTACHER AND A METHOD FOR ATTACHING A MOVABLE OBJECT
MOSHE RAZ COHEN
GENETIC PRODUCTS DIFFERENTIALLY EXPRESSED IN TUMORS AND THE USE THEREOF
GANYMED PHARMACEUTICALS AG
DE 10254601.0 22/11/2002
PCT/EP/2003/013091
WO/2004/047863

02/05/2008 201279 C08G (2010.01)
METHOD AND DEVICE FOR CLEANING AN ABSORPTIVE POLYESTER
BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG
DE 102007020951.9 04/05/2007
PCT/EP/2008/055408
WO/2008/135523

08/04/2008 201280 A61K (2010.01)
USE OF 4 - (NITROOXY) - BUTYL - (S) - 2- 6 - METHOXY-2 - NAPHTYL) - PROPOANOATE FOR TREATING PAIN AND INFLAMMATION
NICOX S.A.
US 60/907970 25/04/2007
PCT/EP/2008/054188
WO/2008/132025

27/04/2007 201281 C07K (2010.01)
ANTIBODIES THAT BIND BOTH IL - 17A AND IL-17F AND METHODS OF USING THE SAME
ZYMOGENETICS INC.
PCT/US/2007/067637
WO/2008/133684

May 31, 2010
May 31, 2010

201282
DOOR LOCK
ABLOY OY
FI 20075295 27/04/2007
PCT/FI/2008/050170
WO/2008/132272

201283
HYDROQUINONE ANSAMYCIN FORMULATIONS
INFINITY DISCOVERY, INC.
US 60/911330 12/04/2007
PCT/US/2008/060063
WO/2008/128063

201284
METHODS OF TREATING CANER USING PYRIDOPYRIMIDINONE INHIBITORS OF PI3K ALPHA
EXELIXIS, INC.
US 60/922899 10/04/2007
PCT/US/2008/004573
WO/2008/124161

201285
STYRENYL DERIVATIVE COMPOUNDS FOR TREATING OPHTHALMIC DISEASES AND DISORDERS
ACUCELA INC
US 60/913241 20/04/2007
US 60/937002 22/06/2007
PCT/US/2008/061073
04/04/2008 201286 H05H (2010.01)

14/04/2008 201288 C07C (2010.01)

21/05/2008 201289 E21B (2010.01)
21/05/2008 201290 E21B (2010.01)

UTILIZATION OF LOW BTU GAS GENERATED DURING IN SITU HEATING OF ORGANIC-RICH ROCK EXXONMOBIL UPSTREAM RESEARCH COMPANY
US 60/931820 25/05/2007
PCT/US/2008/006463 WO/2008/147503

09/04/2008 201291 B65D (2010.01)

EASY - OPENING FLEXIBLE CONTAINER
THE PROCTER & GAMBLE COMPANY
PCT/IB/2008/051347 WO/2008/122961

09/04/2008 201292 A61F (2010.01)

APPLICATOR HAVING AN ENHANCED GRIPPING REGION
THE PROCTER & GAMBLE COMPANY
PCT/IB/2008/051348 WO/2008/126016

12/08/1999 201293 C07D (2010.01)

METHOD OF MANUFACTURE OF 1, 3 - OXATHIOLANE NUCLEOSIDES ANALOGS
GILEAD SCIENCES, INC.
US 60/096214 12/08/1998
US 60/122841 04/03/1999
PCT/US/1999/018584

May 31, 2010
WO/2000/009494

WATER - SOLUBLE IRON-CARBOHYDRATE DERIVATIVE COMPLEXES, PREPARATION THEREOF AND MEDICAMENTS COMPRISING THEM
VIFOR (INTERNATIONAL) AG.
EP 07109081.5 29/05/2007
PCT/EP/2008/056276
WO/2008/145586

21/05/2008 201294 C08B (2010.01)

PREDICTING POST- TREATMENT SURVIVAL IN CANCER PATIENTS WITH MICRONAS NATIONAL TAIWAN UNIVERSITY US 60/910993 10/04/2007
PCT/US/2008/059767
WO/2008/124777

09/04/2008 201298 C12Q (2010.01)

PROCESS FOR HCV PROTEASE INHIBITOR INTERMEDIATE F. HOFFMANN-LA ROCHE AG
EP 07106771.4 24/04/2007
PCT/EP/2008/054518
WO/2008/128921

15/04/2008 201299 C07D (2010.01)

HCV PROCESS FOR HCV PROTEASE INHIBITOR INTERMEDIATE
F. HOFFMANN-LA ROCHE AG
EP 07106771.4 24/04/2007
PCT/EP/2008/054518
WO/2008/128921

27/03/2008 201300 C07D (2010.01)

"הבטוח השם"-ט"ו 2010
<table>
<thead>
<tr>
<th>Publication Date</th>
<th>Classification</th>
<th>发明名称</th>
<th>发明者</th>
<th>发明号</th>
<th>优先权国家及优先权号</th>
<th>发明者/申请人</th>
<th>发明号/申请号</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/04/2008</td>
<td>A61K (2010.01)</td>
<td>NEW DROSPIRENONE /17 BETA-ESTRADIOL REGIMEN, PHARMACEUTICAL COMPOSITION PRODUCT AND KIT FOR PERFORMING THIS REGIMEN</td>
<td>BAYER SCHERING PHARMA AKTIENGESELLSCHAFT</td>
<td>US 60/910326</td>
<td>PCT/EP/2008/002823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/04/2008</td>
<td>G01N (2010.01)</td>
<td>COMPOSITIONS, DEVICES, SYSTEMS, AND METHODS FOR USING A NANOPORE</td>
<td>THE REGENTS OF THE UNIVERSITY OF CALIFORNIA</td>
<td>US 60/921787</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May 31, 2010
A METHOD OF PRODUCING FAST DISSOLVING TABLETS
ROYAL COLLEGE OF SURGEONS IN IRELAND
EP 07394008.2 03/04/2007
US 60/922313 09/04/2007
PCT/IE/2008/000036
WO/2008/120181

A METHOD AND TEST KIT FOR THE RAPID IDENTIFICATION AND CHARACTERIZATION OF CELLS
YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD
US 60/907630 12/04/2007
PCT/IL/2008/000495
WO/2008/126081

A METHOD OF PRODUCING FAST DISSOLVING TABLETS
ROYAL COLLEGE OF SURGEONS IN IRELAND
EP 07394008.2 03/04/2007
US 60/922313 09/04/2007
PCT/IE/2008/000036
WO/2008/120181

A METHOD AND TEST KIT FOR THE RAPID IDENTIFICATION AND CHARACTERIZATION OF CELLS
YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD
US 60/907630 12/04/2007
PCT/IL/2008/000495
WO/2008/126081
A NEW PROCESS FOR THE MANUFACTURING OF THE COMPOUND 2 - HYDROXY - 3 - [5 - (MORPHOLIN - 4 - YLMETHYL) PYRIDIN - 2 - YL] 1H - INDOLE - 5 - CARBONITRILE 701
ASTRAZENECA AB
US 60/912527 18/04/2007
PCT/SE/2008/050432 WO/2008/130312

NOVEL N - (8 - HETEROARYLTETRAHYDRONAPHTALENE - 2YL) OR N - (5 - HETEROARYLCHROMANE - 3 - YL) CARBOXAMIDE DERIVATIVES FOR THE TREATMENT OF PAIN
ASTRAZENECA AB
US 60/913312 23/04/2007
PCT/SE/2008/050459 WO/2008/130320

07/06/2002 201310 C07D (2010.01)
"An innovative process for the manufacturing of the compound 2 - hydroxy - 3 - [5 - (morpholin - 4 - ylmethyl) pyridin - 2 - yl] 1H - indole - 5 - carbonitrile 701
AstraZeneca AB
US 60/912527 18/04/2007
PCT/SE/2008/050432 WO/2008/130312

Novel N - (8 - heteroaryltetrahydronaphtalene - 2yl) or N - (5 - heteroarylchromane - 3 - yl) carboxamide derivatives for the treatment of pain
AstraZeneca AB
US 60/913312 23/04/2007
PCT/SE/2008/050459 WO/2008/130320

May 31, 2010
THIOACETIC ACID DERIVATIVES AND A METHOD FOR THEIR SYNTHESIS
SOCIETE DE CONSEILS DE RECHERCHES ET D’APPLICATIONS SCIENTIFIQUES S.A.S.
US 60/297059 08/06/2001
PCT/US/2002/017859
WO/2002/100888

04/04/2008 201311 G11B (2010.01)
ADVANTAGEOUS RECORDING MEDIA FOR HOLOGRAPHIC APPLICATIONS
BAYER MATERIALSCIENCE AG
US 60/907629 11/04/2007
PCT/EP/2008/002677
WO/2008/125229

02/04/2008 201312 A01N (2010.01)
5, 6 - DIHYDRO - 1H - PYRIDIN - 2 - ONE COMPOUNDS
ANADYS PHARMACEUTICALS, INC
US 60/907478 03/04/2007
PCT/US/2008/059164
WO/2008/124450

13/03/2008 201314 H04J (2010.01)
SYSTEM AND METHOD FOR TESTING MULTIPLE PACKET DATA TRANSMITTERS
LITEPOINT CORPORATION
US 11/696921 05/04/2007
PCT/US/2008/056827
WO/2008/124250

35 May 31, 2010
SELECTION METHOD FOR CELL INTERNALIZING NUCLEIC ACIDS
BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
US 60/910792 09/04/2007
US 60/984656 01/11/2007
PCT/US/2008/059805
WO/2008/124798

PYRROLIDINE DERIVATIVES AS DUAL NK1/NK3 RECEPTOR ANTAGONISTS
F. HOFFMANN-LA ROCHE AG
EP 07106666.6 20/04/2007
PCT/EP/2008/054261
WO/2008/128891

USE OF HDAC INHIBITORS FOR THE TREATMENT OF GASTROINTESTINAL CANCERS
NOVARTIS AG
US 60/915996 04/05/2007
PCT/US/2008/062341
WO/2008/137630

FUNGICIDE PHENYL - PYRIMIDINYL - AMINO DERIVATIVES
BAYER CROPSCIENCE S.A.
EP 07356067.4 16/05/2007

May 31, 2010
<table>
<thead>
<tr>
<th>Date</th>
<th>Application Number</th>
<th>Classification Code</th>
<th>Inventor/Company</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/03/2006</td>
<td>201321</td>
<td>C07D (2010.01)</td>
<td>Glaxo Group Limited</td>
<td>Novel compounds.</td>
</tr>
<tr>
<td>03/04/2008</td>
<td>201322</td>
<td>A61K (2010.01)</td>
<td>Biopharm AG</td>
<td>Topical fungicidal agents for treating nail disorders.</td>
</tr>
</tbody>
</table>
FLUID TRANSFER DEVICE FOR ASSEMBLING A VIAL WITH PRE-ATTACHED FEMALE CONNECTOR MEDIMOP MEDICAL PROJECTS LTD.

01/10/2009 201323 B65D (2010.01)

FLUID CONTROL DEVICE WITH MANUALLY DEPRESSED ACTUATOR MEDIMOP MEDICAL PROJECTS LTD.

16/04/2008 201324 A61J (2010.01)

AUTOMATIC LIQUID DRUG PREPARATION APPARATUS FOR THE PREPARATION OF A PREDETERMINED DOSAGE OF LIQUID DRUG MEDIMOP MEDICAL PROJECTS LTD.

04/05/2008 201325 A61J (2010.01)

FUSED BICYCLIC HETEROARYL DERIVATIVES DAIICHI SANKYO COMPANY, LIMITED

02/04/2008 201326 C07D (2010.01)

38 May 31, 2010

"ז"ז בכסף התש"ע-ט" ה"ט"
<table>
<thead>
<tr>
<th>Publication Date</th>
<th>Application Number</th>
<th>International Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/04/2007</td>
<td>PCT/JP/2007/000419</td>
<td>C01B (2010.01)</td>
<td>METHOD FOR PARALLEL OPERATION OF REACTORS THAT GENERATE MOISTURE FUKIN INCORPORATED</td>
</tr>
<tr>
<td>12/05/2008</td>
<td>PCT/EP/2008/003803</td>
<td>A61F (2010.01)</td>
<td>HANDLE FOR MANIPULATING A CATHETER TIP, CATHETER SYSTEM AND MEDICAL INSERTION SYSTEM FOR INSERTING A SELF-EXPANDABLE HEART VALVE STENT JENAVALVE TECHNOLOGY INC.</td>
</tr>
<tr>
<td>01/10/2009</td>
<td>PCT/EP/2008/003803</td>
<td>G01C (2010.01)</td>
<td>IMPACT RESISTANT TORPEDO SPIRIT LEVEL KAPRO INDUSTRIES LTD.</td>
</tr>
</tbody>
</table>
PROCESS FOR PRODUCING PESTICIDAL BENZAMIDE COMPOUNDS
SUMITOMO CHEMICAL COMPANY, LIMITED
PCT/JP/2008/057376
WO/2008/126933

09/04/2008 201333 C07D (2010.01)
METHOD FOR PRODUCING AMIDE COMPOUND
SUMITOMO CHEMICAL COMPANY, LIMITED
PCT/JP/2008/056998
WO/2008/126858

06/04/2008 201335 F28C (2010.01)
AN INTEGRATED ACTIVE COOLED CABINET/RACK FOR ELECTRONIC EQUIPMENTS
GIGUSHIN SKY YEKTIEL
US 60/910216 05/04/2007
PCT/IL/2008/000474
WO/2008/122977

08/04/2008 201337 H01L (2010.01)
A METHOD OF MONITORING A SURFACTANT IN A MICROELECTRONIC PROCESS BY FLUORESCENCE
NALCO COMPANY
US 11/696760 05/04/2007
PCT/US/2008/059642
WO/2009/126147

May 31, 2010

 miracel
<table>
<thead>
<tr>
<th>Date</th>
<th>Application Number</th>
<th>Classification</th>
<th>Title</th>
<th>Invention</th>
<th>Filing Date</th>
<th>Priority Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/04/2008</td>
<td>201338</td>
<td>C07K (2010.01)</td>
<td>CROSS - SPECIES - SPECIFIC BISPECIFIC BINDERS</td>
<td>MICROMET AG</td>
<td>EP 07006990.1</td>
<td>03/04/2007</td>
<td>08/04/2008</td>
</tr>
<tr>
<td>08/04/2008</td>
<td>201339</td>
<td>H01L (2010.01)</td>
<td>A METHOD OF MONITORING A SURFACTANT IN A MICROELECTRONIC PROCESS BY ABBORBANCE</td>
<td>NALCO COMPANY</td>
<td>US 11/696797</td>
<td>05/04/2007</td>
<td>03/04/2008</td>
</tr>
<tr>
<td>03/04/2008</td>
<td>201340</td>
<td>C07K (2010.01)</td>
<td>CROSS - SPECIES - SPECIFIC CD3 - EPSILON BINDING DOMAIN</td>
<td>MICROMET AG</td>
<td>EP 07006990.1</td>
<td>03/04/2007</td>
<td>03/04/2008</td>
</tr>
</tbody>
</table>
MULTILAYER CVD COATING
CERATIZIT AUSTRIA GESELLSCHAFT M.B.H
AT GM 212/2007 02/04/2007
PCT/AT/2008/000118 WO/2008/119095

DEVICE FOR THE TREATMENT OF WATER, IN PARTICULAR A FILTER DEVICE, AND CARTRIDGE
BRITA GMBH DE 10 2007 017 388.3 05/04/2007

PLANETARY GEARBOX
REM TECHNOLOGIES, INC.
US 60/474836 30/05/2003
US 60/475210 02/06/2003

METHOD OF SUPERFINISHING A HOLLOW WHEEL GEAR
REM TECHNOLOGIES, INC.
US 60/474836 30/05/2003
US 60/475210 02/06/2003
DIVERSITY TRANSMISSION MODES FOR MIMO OFDM COMMUNICATION SYSTEMS
QUALCOMM INCORPORATED
US 10/179439 24/06/2002
PCT/US/2003/019466
WO/2004/002011

NEWCOMPOSITIONS AND METHODS FOR CELL KILLING
OPLO\N B.V.
US 60/907463 03/04/2007
PCT/IL/2008/000465
WO/2008/120219

1, 4 - HYDROGENATION OF DIENES WITH RU COMPLEXES
FIRMENICH SA
EP 07105554.5 03/04/2007
PCT/IB/2008/051227
WO/2008/120175

1, 4 HYDROGENATION OF SORBOL WITH RU COMPLEXES
INNOVAROMA SA
EP 07105557.8 03/04/2007

May 31, 2010
SUBPROJECTILE HAVING AN ENERGY
CONTENT
RWM SCHWEIZ AG
DE 102007016828.6 05/04/2007
DE 102007021451.2 08/05/2007
PCT/EP/2008/002378
WO/2008/122365

METHOD OF PRODUCING HIGH-
STRENGTH POLYOLEFIN RIBBONS,
TEXTILE AND ENGINEERING SHEET
MATERIALS PRODUCED THEREFROM,
AND USE THE LATTER IN PROTECTIVE
BODIES FOR PROVIDING PROTECTION
AGAINST BALLISTIC PROJECTILES
AND THE LIKE
TEIJIN MONOFILAMENT GERMANY
GMBH
DE 102007017621.1 12/04/2007
PCT/EP/2008/002887
WO/2008/125298

DEVICE AND METHOD FOR
ELECTRONIC SIGNATURE VIA
PROXY
MICHAEL FELDBAU
SELECTIVE ANDROGEN RECEPTOR MODULATORS FOR TREATING DIABETES
UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
PCT/US/2008/004816
WO/2008/127717

MULTIPLE LAYER POLYMER INTERLAYERS HAVING A MELT FRACTURED SURFACE
SOLUTION INC.
PCT/US/2008/059961
WO/2008/128003

SYSTEMS AND METHODS FOR PULSE DELIVERY
TASER INTERNATIONAL, INC.
US 11/737374 19/04/2007
PCT/US/2007/067543
WO/2008/130414

METHOD OF FORMING A THREE-DIMENSIONAL MICROSTRUCTURE ON A SURFACE, USES THEREOF, AND MICROSTRUCTURED PRODUCTS SO OBTAINED

May 31, 2010
HETEROARYL AMIDE AMIDE ANALOGUES AS P2X7 ANTAGONISTS
H. LUNDBECK A/S
US 60/910864 10/04/2007
PCT/US/2008/004563
WO/2008/124153

APPARATUS AND METHOD FOR SCULPTING THE SURFACE OF A JOINT
ALEXANDRIA RESEARCH TECHNOLOGIES LLC
US 60/910131 04/04/2007
PCT/US/2008/059482
WO/2008/124633

BROADBAND DATA AND VOICE COMMUNICATIONS OVER WIRELESS AND POWERLINE HYBRID NETWORKS
AMPERION INC
PCT/US/2007/065752
WO/2008/123876
ARCUATE MAGAZINE FOR A FIREARM AND A METHOD FOR MAKING THE SAME
AIRTRONIC USA, INC
US 60/922104 06/04/2007
PCT/US/2008/059584
WO/2008/156902

LOADS MANAGEMENT AND OUTAGES DETECTION FOR SMART GRID
MOSHE HENIG

IRRIGATION PIPE
NETAFIM LTD
PCT/IL/2008/000271
WO/2008/122972

INFORMATION GATHERING AND RETRIEVAL OVER MULTIPLE CHANNELS USING UNIPOLAR MATRIX SUMMING
DR. DORON KWIAT
IL 0000000 01/10/2009

Free Download from Israel Patent Office
47
May 31, 2010
PYRIMIDINE DERIVATIVES AS INHIBITORS OF PHOSPHATIDYLINOSITOL - 3 KINASE
THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL
GB 0707088.1 12/04/2007
GB 0707611.0 19/04/2007
PCT/GB/2008/001301
WO/2008/125839

PHARMACEUTICAL COMPOUNDS
THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL
GB 0707086.5 12/04/2007
GB 0707613.6 19/04/2007
PCT/GB/2008/001292
WO/2008/125833

2 - MORPHOLIN - 4 - YL - PYRIMIDINES AS PI3K INHIBITORS
THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL
GB 0707087.3 12/04/2007
PCT/GB/2008/001294
WO/2008/125835
AUTOMATED MANAGEMENT OF SOFTWARE REQUIREMENTS VERIFICATION
LDRA TECHNOLOGY, INC
US 60/907474 03/04/2007
PCT/US/2008/004349 WO/2008/124038

A BERMATOLOGY APPARATUS
MICHAEL SLATKINE

A KIT AND METHOD FOR ATTACHING TILES
MOSHE SHAUL

IMPROVEMENT OF CHILD SAFETY SEAT SET-UP IN A VEHICLE
YAIR DAVID
US 12/430137 27/04/2009

 indefinite
DEVICE AND METHOD FOR GENERATING A MULTI-CHANNEL SIGNAL OR A PARAMETER DATA SET
FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
DE 102004043521.9 08/09/2004
PCT/EP/2005/008694
WO/2006/027079

CLOCK EXTRACTION DEVICE WITH DIGITAL PHASE LOCK, REQUIRING NO EXTERNAL CONTROL
CENTRE NATIONAL D'ETUDES SPATIALES
FR 0702552 06/04/2007
PCT/FR/2008/000479
WO/2008/139064

ALCOHOL ALKOXYLATES, AGENTS CONTAINING THESE, AND USE OF THE ALCOHOL ALKOXYLATES AS ADJUVANTS FOR THE AGROCHEMICAL FIELD
BASF SE
EP 07106961.1 25/04/2007
PCT/EP/2008/055034
WO/2008/132150

"ה בחון התש"ע-י, 31 בפברואר 2010"
NOVEL PYRIDOPYRAZINE DERIVATIVES, PROCESS OF MANUFACTURING AND USES THEREOF
AETERNA ZENTARIS GMBH
EP 07107976.8 10/05/2007
US 60/917129 10/05/2007
PCT/EP/2008/055728
WO/2008/138878

10/04/2008 201376 A61K (2010.01)
PRODUCTS FOR PROPHYLAXIS AND /OR TREATMENT OF VIRAL DISEASES AND METHOD OF MAKING AND USING SAME
OMRIX BIOPHARMACEUTICALS LTD.
US 60/911373 12/04/2007
PCT/US/2008/059891
WO/2009/005870

04/04/2008 201377 H04L (2010.01)
METHOD AND APPARATUS FOR IDENTIFYING MOBILE NETWORK PROTOCOL CAPABILITIES
INTERDIGITAL TECHNOLOGY CORPORATION
US 60/910494 06/04/2007
PCT/US/2008/059440
WO/2008/124612

30/04/2008 201378 C07D (2010.01)
TRIAMINOPYRIMIDINE DERIVATIVES AS INHIBITORS OF CDC25 PHOSPHATASE
IPSEN PHARMA S.A.S
FR 0703233 04/05/2007

May 31, 2010
29/04/2008 201379 C07D (2010.01)
INHIBITORS IAP
GENENTECH, INC.
US 60/915010 30/04/2007
PCT/US/2008/061891
WO/2008/134679

11/04/2008 201380 C07D (2010.01)
COMPOUNDS WITH ANTI-CANCER ACTIVITY
CANBAS CO. LTD.
US 60/911258 11/04/2007
PCT/IB/2008/003036
WO/2009/031040

04/07/2008 201382 A01H (2010.01)
METHOD FOR IDENTIFYING PLANT MATERIAL THAT SHOWS A REDUCED DISCOLOURATION, PLANTS THUS IDENTIFIED AND USE OF THE IDENTIFIED PLANTS FOR THE PRODUCTION OF COMMERCIAL CROP PLANTS SHOWING A REDUCED DISCOLOURATION
RIJK ZWAAN ZAADTEELT EN ZAADHANDEL B.V.
EP 0705565.7 06/07/2007
PCT/EP/2008/005491
WO/2008/007066
MELATONIN TABLET AND METHODS OF PREPARATION AND USE
JOHN A. MCCARTY
US 60/922921 11/04/2007
PCT/US/2008/004615 WO/2008/127609

PATIENT - SPECIFIC STEM CELL LINES DERIVED FROM HUMAN PARTHENOGENETIC BLASTOCYSTS INTERNATIONAL STEM CELL CORPORATION
US 60/922244 06/04/2007
PCT/US/2008/004529 WO/2008/124142

WRAPPED BUNDLE OF SMOKING ARTICLES
PHILIP MORRIS PRODUCTS S.A.
EP 07110699.1 20/06/2007

TEM8 PEPTIDES AND VACCINES COMPRISING THE SAME ONCOTHERAPY SCIENCE, INC.
US 60/911194 11/04/2007
PCT/JP/2008/000932 WO/2008/126413

May 31, 2010
SKIN-CARE COMPOSITIONS AND USES THEREOF
AHAVA- DEAD SEA LABORATORIES LTD.
US 61/136834 07/10/2008

IMMUNOGLOBULIN PURIFICATION
F. HOFFMANN-LA ROCHE AG
EP 07010840.2 01/06/2007
PCT/EP/2008/004231
WO/2008/145351

OXAZOLIDINONE FOR THE TREATMENT AND PROPHYLAXIS OF PULMONARY HYPERTENSION
BAYER SCHERING PHARMA AKTIENGESELLSCHAFT
DE 102007018662.4 20/04/2007
PCT/EP/2008/002829
WO/2008/128653

SYSTEMS AND METHODS FOR REMOVING MEDICATION FROM PACKAGING
MTS MEDICATION TECHNOLOGIES, INC.
PCT/US/2008/060628
WO/2008/131100

22/04/2008

METHOD FOR STABILIZING A PROTEIN
F. HOFFMANN-LA ROCHE AG
EP 07107353.0 02/05/2007
PCT/EP/2008/054835
WO/2008/135380

16/05/2008

USE OF 4-PYRROLIDIN-1-YL QUINOLINE COMPOUNDS TO KILL CLINICALLY LATENT MICROORGANISMS
HELPERBY THERAPEUTICS LIMITED
GB 0709489.9 17/05/2007
GB 0807591.3 24/04/2008
PCT/GB/2008/001694
WO/2008/142384

07/05/2003

SYSTEM FOR PERMITTING CONTROL OF THE PURGING OF A NODE B BY THE SERVING RADIO NETWORK CONTROLLER
INTERDIGITAL TECHNOLOGY CORPORATION
US 60/379828 10/05/2002
PCT/US/2003/014187
WO/2003/096712

04/04/2008

A61K (2010.01)

201391

A61K (2010.01)

201392

A61K (2010.01)

201393

H04L (2010.01)

201394

02/05/2007

07107353.0

054835

02/05/2007

0709489.9

0807591.3

001694

142384

05/05/2003

60/379828

014187

096712

04/04/2008

May 31, 2010

"ז"ה בכסן המש"ט-נ, 2010
<table>
<thead>
<tr>
<th>发明名称</th>
<th>发明号</th>
<th>申请日</th>
<th>发明人</th>
<th>申请国家</th>
</tr>
</thead>
<tbody>
<tr>
<td>尼克酸-基药用制剂</td>
<td>US 60/921727</td>
<td>04/04/2007</td>
<td>THOMAS H., HIGHT</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>US 61/011302</td>
<td>16/01/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 61/063484</td>
<td>04/02/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 61/072489</td>
<td>31/03/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT/US/2008/059425</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO/2008/127893</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>尼克酸-基药用制剂</td>
<td>C12N (2010.01)</td>
<td>201395</td>
<td>西农菲医药有限公司</td>
<td>美国</td>
</tr>
<tr>
<td></td>
<td>DK PA200700764</td>
<td>25/05/2007</td>
<td>SYMPHGEN A/S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DK PA200701292</td>
<td>07/09/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT/DK/2008/050116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO/2008/145133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>三嗪衍生物，包含此类衍生物的制剂和使用此类衍生物治疗癌症和自身免疫疾病的方法</td>
<td>C08K (2010.01)</td>
<td>201396</td>
<td>OMYA DEVELOPMENT AG</td>
<td>瑞士</td>
</tr>
<tr>
<td></td>
<td>EP 07007599.9</td>
<td>13/04/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT/IB/2008/000889</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO/2008/125955</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May 31, 2010
<table>
<thead>
<tr>
<th>Date</th>
<th>Application Number</th>
<th>Classification(2010.01)</th>
<th>Inventor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/06/2008</td>
<td>201398</td>
<td>C07K</td>
<td>PROMETIC BIOSCIENCES, INC.</td>
<td>POLYPEPTIDES, ANTIBODY VARIABLE DOMAINS AND ANTAGONISTS</td>
</tr>
<tr>
<td>09/05/2008</td>
<td>201400</td>
<td>G06Q</td>
<td>MICROSOFT CORPORATION</td>
<td>VIRTUAL POINTS CLEARINGHOUSE</td>
</tr>
<tr>
<td>11/04/2008</td>
<td>201401</td>
<td>C07D</td>
<td>"הבטוחodos הנס"-ט-2010</td>
<td></td>
</tr>
</tbody>
</table>
N - OXIDE AND/OR DI-N-OXIDE DERIVATIVES OF DOPAMINE RECEPTOR STABILIZERS/MODULATORS DISPLAYING IMPROVED CARDIOVASCULAR SIDE-EFFECTS PROFILES
NSAB, FILIAL AF NEUROSEARCH SWEDEN AB, SVERIGE
PCT/SE/2008/050414 WO/2008/127188

10/04/2008 201402 C07D (2010.01)
NOVEL PYRIMIDINE COMPOUND HAVING DIBENZYLAMINE STRUCTURE AND MEDICAMENT COMPRISING THE SAME
KOWA COMPANY, LTD.
US 60/911620 13/04/2007
PCT/JP/2008/057058 WO/2008/129951

11/04/2008 201404 C07K (2010.01)
INTERFERONS OF RHECUS AND CYNOMOLGUS ORIGIN AND USES THEREOF
PESTKA BIOMEDICAL LABORATORIES, INC.
US 60/923069 11/04/2007
US 60/925281 18/04/2007
PCT/US/2008/004805 WO/2008/127711

11/04/2008 201405 H04M (2010.01)

METHOD AND APPARATUS FOR INTEGRATING A SOFT MOBILE VOIP CLIENT IN A CELLULAR PC CARD
INTERDIGITAL TECHNOLOGY CORPORATION
US 60/911631 13/04/2007
PCT/US/2008/004800
WO/2008/127706

11/04/2008 201406 A61K (2010.01)
ISCHEMIA / REPERFUSION PROTECTION COMPOSITIONS AND METHODS OF USING
REGENTS OF THE UNIVERSITY OF MINNESOTA,
US 60/911460 12/04/2007
US 61/026321 05/02/2008
PCT/US/2008/060100
WO/2008/128095

29/07/2003 201407 C07D (2010.01)
METHOD FOR PREPARING 3-HALO-4,5-DIHYDRO-1H-PYRAZOLES
E.I. DU PONT DE NEMOURS AND COMPANY
US 60/400356 31/07/2002
US 60/446451 11/02/2003
PCT/US/2003/023820
WO/2004/011453

10/04/2008 201408 G02B (2010.01)
OPTICAL SWITCHES AND LOGIC GATES EMPLOYING SAME
GALTRONICS OPTICAL LTD

May 31, 2010
CHANGES OF FORWARD-LINK AND REVERS-LINK SERVING ACCESS POINTS
QUALCOMM INCORPORATED
US 60/913911 25/04/2007
US 60/943434 12/06/2007
US 12/109043 24/04/2008
PCT/US/2008/061624
WO/2008/134546

A METHOD AND APPARATUS FOR NEW KEY DERIVATION UPON HANDOFF IN WIRELESS NETWORKS
QUALCOMM INCORPORATED
US 60/914033 26/04/2007
US 12/109082 24/04/2008
PCT/US/2008/061645
WO/2008/134564

TRANSPOSED STRUCTURE FOR CYCLIC DELAY DIVERSITY (CDD) BASED PRECODING
QUALCOMM INCORPORATED
US 60/914031 25/04/2007
US 12/109081 24/04/2008
PCT/US/2008/061630
WO/2008/134551

UNDERWATER PLASMA PROCESSING APPARATUS AND SYSTEM AND METHOD FOR PROCESSING BALLAST WATER OF SHIP USING THE SAME
21C SHIPBUILDING CO., LTD.

May 31, 2010
TRIAZOLOPYRIDINE CARBOXYLAMIDE DERIVATIVES, PREPARATION THEREOF AND THERAPEUTIC USE THEREOF
SANOFI-AVENTIS
FR 0702807 18/04/2007
PCT/FR/2008/000535 WO/2008/145842

APPARATUS AND METHOD FOR LOW BANDWIDTH PLAY POSITION PREVIEWING OF VIDEO CONTENT DIGITAL FOUNTAIN, INC.
PCT/US/2008/060363 WO/2008/130936

CONDENSATION SYSTEM FOR DEHUMIDIFICATION AND DESALINATION VINSTEVE INVESTMENTS INC.
US 60/907643 12/04/2007
PCT/CA/2008/00690 WO/2008/124935
04/04/2008 201420 C12Q (2010.01)
NUCLEIC ACID ENZYMES AND COMPLEXES AND METHODS FOR THEIR USE
JOHNSON & JOHNSON RESEARCH PTY, LIMITED
AU 2007901833 05/04/2007
US 11/697021 05/04/2007
US 60/910427 05/04/2007
PCT/AU/2008/000492
WO/2008/122084

23/04/2008 201421 C07F (2010.01)
PYRIDINE DERIVATIVES SUBSTITUTED BY HETEROCYCLIC RING AND PHOSPHONOAMINO GROUP, AND ANTI-FUNGAL AGENT CONTAINING SAME
EISAI R & D MANAGEMENT CO. LTD.
US 60/94615 27/04/2007
PCT/JP/2008/057851
WO/2008/136324

25/04/2008 201422 C07D (2010.01)
THERAPEUTIC AGENTS USEFUL FOR Treating PAIN
PURDUE PHARMA L.P.
US 60/924056 27/04/2007
US 60/924377 11/05/2007
PCT/US/2008/005329
WO/2008/133973

23/04/2008 201423 A01N (2010.01)
FUNGICIDAL COMPOSITIONS
63

May 31, 2010. 169

鞍明elements, complexes, and methods for their use

גוועדת מחקרי ופיתוח

נ desarps substituted by heterocyclic ring and phosphonomino group, and anti-fungal agent containing same

EISAI R & D MANAGEMENT CO. LTD.

S Yoshida, et al.

רבעבב קוחלים זכריים

A. H. H. Mosmann, et al.

May 31, 2010. 169
SYNGENTA PARTICIPATIONS AG
EP 07008370.4 25/04/2007
PCT/EP/2008/003279
WO/2008/131901

04/04/2008 201424 C07D (2010.01)
SALTS OF ISOPHOSPHORAMIDE MUSTARD AND ANALOGS THEREOF
ZIOPHARM ONCOLOGY, INC.
US 60/922148 06/04/2007
US 60/927363 02/05/2007
US 60/934914 15/06/2007
US 61/001237 30/10/2007
PCT/US/2008/004449
WO/2008/124097

17/04/2008 201425 A61K (2010.01)
WOUND HEALING COMPOSITIONS CONTAINING KERATIN BIOMATERIALS
WAKE FOREST UNIVERSITY HEALTH SCIENCES
US 60/912265 17/04/2007
PCT/US/2008/004984
WO/2008/130607

24/04/2008 201426 A61K (2010.01)
DRUG COMBINATION AND ITS USE IN THE TREATMENT OF MUSCLE LOSS
ACACIA PHARMA LIMITED
GB 0707930.4 24/04/2007
GB 0707931.2 24/04/2007
GB 0710101.7 25/05/2007
PCT/GB/2008/001452
WO/2008/129308

May 31, 2010

64
SULFUR COMPOUNDS AS INHIBITORS OF HEPATITIS C VIRUS NS3 SERINE PROTEASE
SCHERING CORPORATION
US 1/733479 10/04/2007
PCT/US/2008/004549
WO/2008/124148

METHOD AND DEVICE FOR OBTAINING A VOLUME DATA SET OF A MOBILE TISSUE OR ORGAN OF A PATIENT
BIOSENSE WEBSTER, INC.
DE 10 2007 016 902.9 10/04/2007
PCT/EP/2008/054076
WO/2008/122599

METHODS AND COMPOSITIONS FOR LIVE ATTENUATED VIRUSES INVIRAGEN, INC
US 60/910579 06/04/2007
PCT/US/2008/059472
WO/2009/014774

SULFUR COMPOUNDS AS INHIBITORS OF HEPATITIS C VIRUS NS3 SERINE PROTEASE
SCHERING CORPORATION
US 1/733479 10/04/2007
PCT/US/2008/004549
WO/2008/124148

METHOD AND DEVICE FOR OBTAINING A VOLUME DATA SET OF A MOBILE TISSUE OR ORGAN OF A PATIENT
BIOSENSE WEBSTER, INC.
DE 10 2007 016 902.9 10/04/2007
PCT/EP/2008/054076
WO/2008/122599

METHODS AND COMPOSITIONS FOR LIVE ATTENUATED VIRUSES INVIRAGEN, INC
US 60/910579 06/04/2007
PCT/US/2008/059472
WO/2009/014774

SULFUR COMPOUNDS AS INHIBITORS OF HEPATITIS C VIRUS NS3 SERINE PROTEASE
SCHERING CORPORATION
US 1/733479 10/04/2007
PCT/US/2008/004549
WO/2008/124148

METHOD AND DEVICE FOR OBTAINING A VOLUME DATA SET OF A MOBILE TISSUE OR ORGAN OF A PATIENT
BIOSENSE WEBSTER, INC.
DE 10 2007 016 902.9 10/04/2007
PCT/EP/2008/054076
WO/2008/122599

METHODS AND COMPOSITIONS FOR LIVE ATTENUATED VIRUSES INVIRAGEN, INC
US 60/910579 06/04/2007
PCT/US/2008/059472
WO/2009/014774

SULFUR COMPOUNDS AS INHIBITORS OF HEPATITIS C VIRUS NS3 SERINE PROTEASE
SCHERING CORPORATION
US 1/733479 10/04/2007
PCT/US/2008/004549
WO/2008/124148

METHOD AND DEVICE FOR OBTAINING A VOLUME DATA SET OF A MOBILE TISSUE OR ORGAN OF A PATIENT
BIOSENSE WEBSTER, INC.
DE 10 2007 016 902.9 10/04/2007
PCT/EP/2008/054076
WO/2008/122599

METHODS AND COMPOSITIONS FOR LIVE ATTENUATED VIRUSES INVIRAGEN, INC
US 60/910579 06/04/2007
PCT/US/2008/059472
WO/2009/014774
METHODS AND COMPOSITIONS
COMPRISING DESVENLAFAXINE OR
DULOXETINE FOR TREATING SLEEP
RELATED BREATHING DISORDERS
SEPRACOR INC.
US 60/922466 09/04/2007
PCT/US/2008/004508
WO/2008/124128

14/04/2008
AUTONOMOUS BEHAVIORS FOR A
REMOTE VEHICLE
IROBOT CORPORATION
US 11/748363 14/05/2007
PCT/US07/68890 14/05/2007
PCT/US/2008/060286
WO/2008/144135

16/04/2008
7-SUBSTITUTED INDOLE MCL-1 INHIBITORS
ABBOTT LABORATORIES
US 60/912038 16/04/2007
US 60/949650 13/07/2007
PCT/US/2008/060472
WO/2008/131000

11/04/2008
COMBINATION ANTICOAGULANT
THERAPY WITH A COMPOUND THAT
ACTS AS A FACTOR XA INHIBITOR
MILLENNIUM PHARMACEUTICALS,
INC.
US 60/911852 13/04/2007
PCT/US/2008/004760
WO/2008/127682
<table>
<thead>
<tr>
<th>Date</th>
<th>Publication Number</th>
<th>Title</th>
<th>Inventor(s)</th>
<th>Application Number</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/06/2003</td>
<td>201434</td>
<td>N - SUBSTITUTED PIPERIDINE DERIVATIVES AS SEROTONIN RECEPTOR AGENTS</td>
<td>ACADIA PHARMACEUTICALS, INC.</td>
<td>US 60/391269</td>
<td>24/06/2002</td>
</tr>
<tr>
<td>30/10/2007</td>
<td>201435</td>
<td>SYSTEM AND METHOD FOR HYDRAULICALLY MANAGING FLUID PRESSURE DOWNSTREAM FROM A MAIN VALVE BETWEEN SET POINTS</td>
<td>CLA-V AL CO</td>
<td>US 60/911604</td>
<td>13/04/2007</td>
</tr>
<tr>
<td>30/04/2008</td>
<td>201436</td>
<td>ROLL - STABILIZING FIFTH WHEEL APPARATUS</td>
<td>SILVER EAGLE MANUFACTURING CO.</td>
<td>US 60/915081</td>
<td>30/04/2007</td>
</tr>
<tr>
<td>24/02/1998</td>
<td>201437</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Document Number</td>
<td>Classifications</td>
<td>Title</td>
<td>Inventor/Company</td>
<td>Filing Dates</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>11/04/2008</td>
<td>C07C201438</td>
<td>201438</td>
<td>USE OF BIPOLAR TRANS CAROTENOIDS AS A PRETREATMENT AND IN THE</td>
<td>DIFFUSION PHARMACEUTICALS LLC</td>
<td>US 60/907718</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TREATMENT OF PERIPHERAL VASCULAR DISEASE</td>
<td></td>
<td>PCT/US/2008/004708</td>
</tr>
<tr>
<td>09/05/2008</td>
<td>A61K201439</td>
<td>201439</td>
<td>USE OF HDAC INHIBITORS FOR THE TREATMENT OF MELANOMA</td>
<td>NOVARTIS AG</td>
<td>US 60/917345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HDAC</td>
<td></td>
<td>PCT/US/2008/063136</td>
</tr>
</tbody>
</table>
METHOD OF PRODUCING A CURVED PRODUCT COMPRISING DRAWN POLYMER REINFORCING ELEMENTS AND PRODUCT OBTAINED THEREBY

DSM IP ASSETS B.V.

17/04/2008 201442 B29C (2010.01)

CANCEROUS DISEASE MODIFYING ANTIBODIES

F. HOFFMANN-LA ROCHE AG

02/05/2008 201443 C12N (2010.01)

HETEROARYLAMIDE PYRIMIDONE COMPOUNDS

SANOFI-AVENTIS

14/05/2008 201446 C07D (2010.01)

A61K (2010.01)

May 31, 2010

69
USE OF 4-CYCLOPROPYLETHOXY
- N-(3,5-DICHLORO-1-
OXIDOPYRIDIN-4-YL)-5-
(METHOXY) PYRIDINE-2-
CARBOXAMIDE FOR THE
TREATMENT OF CRANIAL
TRAUMAS
SANOFI-AVENTIS
FR 0702852 19/04/2007
PCT/FR/2008/000531
WO/2008/145838

USE OF 4-CYCLOPROPYLETHOXY
- N-(3,5-DICHLORO-1-
OXIDOPYRIDIN-4-YL)-5-
(METHOXY) PYRIDINE-2-
CARBOXAMIDE FOR THE
TREATMENT OF MOTOR DISORDERS
RELATED TO PARKINSON’S DISEASE
SANOFI-AVENTIS
FR 0702853 19/04/2007
PCT/FR/2008/000534
WO/2008/145841

HETEROARYLAMIDE-SUBSTITUTED
PYRIMIDONE DERIVATIVES FOR
THE TREATMENT OF
NEURODEGENERATIVE DISEASES
SANOFI-AVENTIS
EP 07290627.4 16/05/2007
PCT/IB/2008/002429
WO/2008/155666

TRIAZOLOPYRIDINE CARBOXAMIDE
DERIVATIVES AND
TRIAZOLOPYRIMIDINE
CARBOXAMIDE DERIVATIVES,
PREPARATION THEREOF AND
THERAPEUTIC USE THEREOF
SANOFI-AVENTIS
FR 0702809 18/04/2007
PCT/FR/2008/000532
WO/2008/145839

16/04/2008 201451 A61K (2010.01)
USE OF 4-CYCLOPROPYLMETHOXY
- N - (3, 5 - DICHLORO - 1 -
OXIDOPYRIDIN - 4 - YL) - 5 -
(METHOXY) PYRIDINE - 2 -
CARBOXAMIDE FOR THE
TREATMENT OF SPINAL CORD
TRAUMAS
SANOFI-AVENTIS
FR 0702851 19/04/2007
PCT/FR/2008/000533
WO/2008/145840

06/04/2008 201452 C12Q (2010.01)
MEANS AND METHODS FOR
DETECTING BACTERIA IN A SAMPLE
OPTICUL DIAGNOSTICS LTD
US 60/921730 04/04/2007
PCT/IL/2008/000472
WO/2008/122975

02/04/2008 201453 A01G (2010.01)
COVER FOR PLANT GROWING
MEDIUM
STEVEN WILLIAM GALLO
US 11/784072 05/04/2007

May 31, 2010
METHOD FOR GENERATION OF TARGET-MARKING BEARING TRACKS
ATLAS ELEKTRONIK GMBH
DE 102007019445.7 25/04/2007
PCT/EP/2008/001887
WO/2008/131826

PROCESS FOR MAKING TOPOTECAN
SCINOPHARM TAIWAN, LTD
US 60/922918 11/04/2007
PCT/US/2008/004610
WO/2008/127606

VIBRATING ROBOTIC CRAWLER
TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD.
US 60/907691 13/04/2007
PCT/IL/2008/000505
WO/2008/126087

PARABEN COMPOUNDS
UNIVERSITE PIERRE ET MARIE CURIE (PARIS 6)
EP 07290438.6 10/04/2007
PCT/IB/2008/002297
WO/2008/122897

May 31, 2010
PHTHALAZINONE DERIVATIVES AND THEIR USE AS MEDICAMENT TO TREAT CANCER

KUDOS PHARMACEUTICALS LIMITED

US 60/910887 10/04/2007

PCT/GB/2008/001259

WO/2008/122810

A METHOD FOR REDUCING THE VELOCITY OF REACTIVE MASS DISCHARGE AND A DEVICE FOR THE REALIZATION OF THE METHOD IN THE FORM OF A NEW TYPE OF ENGINES FOR AVIATION, SPACE RESEARCH AND OTHER FIELDS OF SCIENCE AND ENGINEERING.

YOHAI TAHOR

THE METHOD AND SYSTEM FOR REALIZATION OF A PAID PUBLIC ACTION USING A TERMINAL UNIT OF PLAYER AND A REGISTRATION SERVER UNIT

NATALIA ZVIAGUINA

10/04/2008 201460 C07D (2010.01)

12/10/2009 201463 F02K (2010.01)

12/10/2009 201464 G07B (2010.01)
SELF-PRECIPITATING PHARMACEUTICAL FORMULATIONS FOR THE MODIFIED RELEASE OF ACTIVE PRINCIPLE

FLAMEL TECHNOLOGIES
FR 0703186 03/05/2007

USE OF HDAC INHIBITORS FOR THE TREATMENT OF BONE DESTRUCTION

NOVARTIS AG
US 60/940735 30/05/2007
PCT/US/2008/064944 WO/2008/150782

OPTICAL PULSE-WIDTH MODIFIER STRUCTURE

RAYTHEON COMPANY

SULFONYL AMIDE DERIVATIVES FOR THE TREATMENT OF ABNORMAL CELL GROWTH

PFIZER PRODUCTS INC.
US 60/912597 18/04/2007
TRIAZOLOPYRIDINE CARBOXAMIDE DERIVATIVES AND TRIAZOLOPYRIMIDINE CARBOXAMIDE DERIVATIVES, PREPARATION THEREOF AND THERAPEUTIC USE THEREOF
SANOFI-AVENTIS
FR 0702808 18/04/2007
PCT/FR/2008/000536
WO/2008/145843

PROTECTION OF CONTROL NETWORKS USING A ONE-WAY LINK
WATERFALL SECURITY SOLUTIONS LTD.
US 11/823950 29/06/2007
PCT/IL/2008/000886
WO/2009/004611

DIAZO BICYCLIC SMAC MIMETICS AND THE USES THEREOF
THE REGENTS OF THE UNIVERSITY OF MICHIGAN
US 60/923348 13/04/2007
PCT/US/2008/060215
WO/2008/128171
04/03/2008 201475 G01R (2010.01)
PROBE FOR TESTING SEMICONDUCTOR DEVICES TOUCHDOWN TECHNOLOGIES, INC.
PCT/US/2008/055835
WO/2008/127801

22/05/2008 201476 C07K (2010.01)
PREVENTION AND TREATMENT OF COMPLEMENT-ASSOCIATED EYE CONDITIONS GENENTECH, INC.
US 60/939791 23/05/2007
PCT/US/2008/064526
WO/2008/147883

16/05/2008 201477 H04B (2010.01)
METHOD FOR OPTIMIZING NEAR FIELD LINKS MICROSOFT CORPORATION
US 60/939827 23/05/2007
PCT/US/2008/063859
WO/2008/147728

22/05/2008 201478 A24D (2010.01)
SMOKING ARTICLE WITH NOVEL WRAPPER PHILIP MORRIS PRODUCTS S.A.
US 60/924666 24/05/2007
PCT/IB/2008/002394
WO/2008/149241
<table>
<thead>
<tr>
<th>Date</th>
<th>Application Number</th>
<th>Classification</th>
<th>Invention Title</th>
<th>Applicant</th>
<th>International Search Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/04/2008</td>
<td>201479</td>
<td>A61K (2010.01)</td>
<td>Titration of Tapentadol</td>
<td>Grunenthal GmbH</td>
<td></td>
</tr>
<tr>
<td>18/04/2008</td>
<td>201480</td>
<td>A61L (2010.01)</td>
<td>Fibrin Compositions containing Strontium Compounds</td>
<td>Baxter International Inc.</td>
<td></td>
</tr>
<tr>
<td>25/04/2008</td>
<td>201481</td>
<td>G01N (2010.01)</td>
<td>Device and Methods for detection of airborne agents</td>
<td>The Regents of the University of California</td>
<td></td>
</tr>
<tr>
<td>02/05/2008</td>
<td>201482</td>
<td>H04L (2010.01)</td>
<td>Application Module and Remote Management Server with Parameter Description Model</td>
<td>Alcatel Lucent</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Application Number</td>
<td>Classification</td>
<td>Inventor</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>16/05/2008</td>
<td>201483</td>
<td>G06K</td>
<td>YEDA RESEARCH AND DEVELOPMENT CO. LTD</td>
<td>METHOD AND APPARATUS FOR COMPUTER-AIDED DIAGNOSIS OF CANCER AND PRODUCT</td>
<td></td>
</tr>
<tr>
<td>06/05/2008</td>
<td>201484</td>
<td>C07D</td>
<td>N.V. ORGANON</td>
<td>NEW PROGESTERONE RECEPTOR MODULATORS</td>
<td></td>
</tr>
<tr>
<td>25/04/2008</td>
<td>201485</td>
<td>A61K</td>
<td>ASTELLAS PHARMA INC.</td>
<td>NEW CYCLIC PEPTIDE COMPOUNDS</td>
<td></td>
</tr>
<tr>
<td>13/10/2009</td>
<td>201486</td>
<td>B23B</td>
<td>ISCAR LTD.</td>
<td>TWIST DRILL</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Application Number</td>
<td>Description</td>
<td>Inventor</td>
<td>Original Language</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>13/10/2009</td>
<td>201487</td>
<td>THREE DIMENSION SEARCH ENGINE SYSTEM</td>
<td>IDO PORITZKY</td>
<td>Hebrew</td>
<td></td>
</tr>
<tr>
<td>28/03/2008</td>
<td>201488</td>
<td>METHOD FOR OPTIMIZING A MINIMAL-PHASE TRANSMISSION</td>
<td>ROHDE & SCHWARZ GMBH & CO. KG</td>
<td>Hebrew</td>
<td></td>
</tr>
<tr>
<td>28/03/2008</td>
<td>201489</td>
<td>METHOD AND EQUALIZER FOR DETECTING DATA SYMBOL</td>
<td>ROHDE & SCHWARZ GMBH & CO. KG</td>
<td>Hebrew</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Application Number</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/04/2008</td>
<td>201490</td>
<td>A Feature Adapted Beamlet Transform Apparatus and Associated Methodology of Detecting Curvilinear Objects of an Image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15/04/2008</td>
<td>201491</td>
<td>Aminoalkoxy Aryl Sulfonamide Compounds and Their Use as 5-HT6 Ligands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/05/2008</td>
<td>201492</td>
<td>Ciphering Sequence Number for an Adjacent Layer Protocol in Data Packet Communications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16/04/2008</td>
<td>201493</td>
<td>"ה בכסו התש"ע-ט May 31, 2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Date</td>
<td>Application Number</td>
<td>Publication Number</td>
<td>Categories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/05/2008</td>
<td>201494</td>
<td>H04B (2010.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXTENDED MICROSLEEP FOR COMMUNICATIONS</td>
<td>QUALCOMM INCORPORATED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 60/915421</td>
<td>01/05/2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 12/112268</td>
<td>30/04/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT/US/2008/062291</td>
<td>WO/2008/137596</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/04/2008</td>
<td>201495</td>
<td>A23L (2010.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMBEDDED LIQUID LUBRICANTS FOR TABLETING</td>
<td>WYETH LLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 11/787381</td>
<td>16/04/2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT/US/2008/060188</td>
<td>WO/2008/130883</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/04/2008</td>
<td>201496</td>
<td>C12N (2010.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAMMALIAN-TYPE GLYCOSYLATION IN PLANTS BY EXPRESSION OF NON-MAMMALIAN GLYCOSYLTRANSFERASES</td>
<td>STICHTING DIENST LANDBOUWKUNDIG ONDERZOEK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 07106337.4</td>
<td>17/04/2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCT/IB/2008/000944</td>
<td>WO/2008/125972</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13/10/2009 201497 A63B (2010.01)
COMPRESSION BAG
MEGO AFEK AC LTD.

15/04/2008 201498 A61K (2010.01)
USE OF DIMIRACETAM IN THE TREATMENT OF CHRONIC PAIN
NEUROTUNE AG
IT M12007A000770 16/04/2007

20/04/2007 201499 G06K (2010.01)
VOLUME RECOGNITION METHOD AND SYSTEM
SOFTKINETIC S.A

09/04/2008 201500 A61M (2010.01)
INJECTION DEVICE FOR DISPENSING A MEDICAMENT
SANOFI-AVENTIS DEUTSCHLAND GMBH
DE 102007018696.9 18/04/2007

May 31, 2010

"הבטוח תקachinery"-י"ח הכסף הכסיד-י"ח
MULTI-FUNCTIONAL CATHODE PACKAGING DESIGN FOR SOLID-STATE RADIATION DETECTORS

REDLEN TECHNOLOGIES
PCT/US/2008/004773
WO/2008/130522

METHODS AND COMPOSITIONS FOR CONTRIBUTING TO THE TREATMENT OF CANCERS

THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
US 60/911773 13/04/2007
PCT/US/2008/059949
WO/2008/127996

RAZOR CARTRIDGE WITH FRONT PIVOT AXIS

THE GILLETTE COMPANY
PCT/IB/2008/051511
WO/2008/129498

RAZOR CARTRIDGE PIVOT AXIS

THE GILLETTE COMPANY
US 11/788672 20/04/2007
PCT/IB/2008/051512
WO/2008/129499

May 31, 2010
<table>
<thead>
<tr>
<th>Publication Date</th>
<th>Application No.</th>
<th>IP Classification</th>
<th>Inventor(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/04/2008</td>
<td>201505</td>
<td>C07D (2010.01)</td>
<td>GRUNENTHAL GMBH</td>
<td>NOVEL VANILLOID RECEPTOR LIGANDS AND THE USE THEREOF FOR THE PRODUCTION OF PHARMACEUTICALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(C)</td>
</tr>
<tr>
<td>15/04/2008</td>
<td>201506</td>
<td>C07D (2010.01)</td>
<td>GRUNENTHAL GMBH</td>
<td>NOVEL VANILLOID RECEPTOR LIGANDS AND THE USE THEREOF FOR THE PRODUCTION OF PHARMACEUTICALS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(D)</td>
</tr>
<tr>
<td>24/04/2008</td>
<td>201507</td>
<td>H01M (2010.01)</td>
<td>BATSCAP</td>
<td>MODULE FOR AN ELECTRIC ENERGY STORAGE ASSEMBLY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(F)</td>
</tr>
<tr>
<td>22/04/2008</td>
<td>201508</td>
<td>A61K (2010.01)</td>
<td></td>
<td>"A method for use of the skin"-T</td>
</tr>
</tbody>
</table>
STABILIZATION OF LIQUID SOLUTIONS OF RECOMBINANT PROTEIN FOR FROZEN STORAGE
BAYER HEALTHCARE LLC
US 60/926698 26/04/2007
PCT/US/2008/061147
WO/2008/134310

29/04/2008 201509 A61K (2010.01)
sGC STIMULATORS, sGC ACTIVATORS AND COMBINATIONS FOR THE TREATMENT OF UROLOGICAL DISORDERS
BAYER SCHERING PHARMA AKTIENGESELLSCHAFT
EP 07009557.5 12/05/2007
PCT/EP/2008/003450
WO/2008/138483

27/05/2008 201510 G06F (2010.01)
DISPLAY OF SEARCH-ENGINE RESULTS AND LIST
MICROSOFT CORPORATION
US 11/760492 08/06/2007
PCT/US/2008/064863
WO/2008/154156

13/05/2008 201511 C07D (2010.01)
SUBSTITUTED AMINO-THIOUREA COMPOUNDS FOR COMBATING ANIMAL PESTS
BASF SE
US 60/939931 24/05/2007
PCT/EP/2008/055851
WO/2008/141980
TARGETED TELEVISION
ADVERTISEMENTS BASED ON
ONLINE BEHAVIOR
ALMONDNET, INC.
PCT/US/2008/055298
WO/2008/130736

AN APPARATUS SYSTEM AND
METHOD FOR HUMAN-MACHINE-
INTERFACE
EXTREME REALITY LTD
PCT/IL/2007/000475
WO/2008/126069

SELECTION OF ROOT INDICES IN
POLYPHASE CAZAC SEQUENCES
QUALCOMM INCORPORATED
US 60/915434 02/05/2007
US 12/113409 01/05/2008
PCT/US/2008/062554
WO/2008/137781

FLEXIBLE SIGINALING OF
RESOURCES ON A CONTROL
CHANNEL
QUALCOMM INCORPORATED
US 60/915660 02/05/2007
25/04/2008 201517 A61K (2010.01)
SET OF MEANS FOR TREATING A MALIGNANT PATHOLOGY, AN AUTOIMMUNE DISEASE OR AN INFECTIOUS DISEASE
LFB BIOTECHNOLOGIES
FR 0703013 25/04/2007
PCT/FR/2008/000598 WO/2008/145866

14/05/2008 201518 G01S (2010.01)
METHODS AND APPARATUS FOR FIRE CONTROL DURING LAUNCH OF AN EFFECTOR
RAYTHEON COMPANY
US 60/917816 14/05/2007

07/05/2008 201519 H04L (2010.01)
LEARNING -BASED SEMI-PERSISTENT SCHEDULING IN WIRELESS COMMUNICATIONS
QUALCOMM INCORPORATED
US 60/916517 07/05/2007
US 12/116146 06/05/2008
PCT/US/2008/062960 WO/2008/137959
01/05/2008

INTERACTIVE CONTROL OF ACCESS TO SERVICES AND CAPABILITIES OF A MOBILE DEVICE
QUALCOMM INCORPORATED
US 11/743833 03/05/2007
PCT/US/2008/062252
WO/2008/137566

14/05/2008

METHODS AND APPARATUS FOR COMMUNICATIONS BETWEEN A FIRE CONTROL SYSTEM AND AN EFFECTOR
RAYTHEON COMPANY
US 60/917729 14/05/2007
PCT/US/2008/063586
WO/2009/023319

14/10/2009

ENVIRONMENTAL FRIENDLY SYSTEM FOR REPLACING FLUID IN FLUID-SUMPS
SHIRA LOTAN

18/04/2008

A BIODEGRADABLE MICROSPHERE COMPOSITION SUITABLE FOR THE CONTROLLED RELEASE OF GLUCOSE CONTROLLING PEPTIDE AND FORMULATION THEREOF
DONG-A PHARMACEUTICAL CO. LTD.

May 31, 2010
DPP-IV INHIBITOR INCLUDING BETA-AMINO GROUP, PREPARATION METHOD THEREOF AND PHARMACEUTICAL COMPOSITION CONTAINING THE SAME FOR PREVENTING AND TREATING A DIABETES OF AN OBESITY

DONG-A PHARM. CO. LTD.

COMPOSITIONS COMPRISING AN ANTIBODY SPECIFIC FOR THE N-TERMINUS OF Aβ FOR USE IN TREATING CEREBRAL AMYLOID ANGIOPATHY

WYETH LLC

DEVICE SYSTEM AND METHOD FOR MONITORING AND CONTROLLING BLOOD ANALYTE LEVELS

C.G.M.3 LTD

May 31, 2010
<table>
<thead>
<tr>
<th>Date</th>
<th>Patent Number</th>
<th>Class Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/05/2008</td>
<td>201534</td>
<td>C07D (2010.01)</td>
<td>METABOLITES OF (THIO) CARBAMOYL-CYCLHOXANE DERIVATIVES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RICHTER GEDEON NYRT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCT/HU/2008/000046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WO/2008/142461</td>
</tr>
<tr>
<td>21/04/2008</td>
<td>201535</td>
<td>A61B (2010.01)</td>
<td>A METHOD FOR DETERMINING</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INSULIN SENSITIVITY AND GLUCOSE ABSORPTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VERIDEX, LLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 60/912998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 60/980230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCT/US/2008/060993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WO/2008/131324</td>
</tr>
<tr>
<td>15/04/2008</td>
<td>201536</td>
<td>E04H (2010.01)</td>
<td>TELESCOPING MAST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FALCK SCHMIDT DEFENCE SYSTEMS A/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DK PA200700552</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCT/DK/2008/001133</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WO/2008/125110</td>
</tr>
<tr>
<td>08/05/2008</td>
<td>201537</td>
<td>C07D (2010.01)</td>
<td></td>
</tr>
</tbody>
</table>
HETEROARYL SUBSTITUTED PYRROLO DERIVATIVES USEFUL FOR TREATING HYPER-PROLIFERATIVE DISORDERS AND DISEASES ASSOCIATED WITH ANGIOGENESIS
BAYER SCHERING PHARMA AKTIENGESELLSCHAFT
US 60/930816 18/05/2007
PCT/EP/2008/003681
WO/2008/141731

16/04/2008
INTERSPINOUS SPACER
VERTIFLEX. INC.
US 60/923841 16/04/2007
US 60/923971 17/04/2007
PCT/US/2008/004901
WO/2008/130564

23/05/2008
PATTERNED WRAPPER PAPER WITH AN ANTI-WRINKLING AGENT
PHILIP MORRIS PRODUCTS S.A.
US 60/924666 24/05/2007
US 60/924676 25/05/2007
US 60/924825 01/06/2007
US 60/929452 28/06/2007
US 60/935751 29/08/2007
US 61/064438 05/03/2008
PCT/IB/2008/002399
WO/2009/004482

26/07/2007
SYSTEM AND METHOD FOR WATER PURIFICATION USING A SOLAR COLLECTOR

May 31, 2010

C02F (2010.01)
TURK GESELLSCHAFT FUR PRODUKTMARKETING UND WERBEMITTEL MBH,
DE 102007020765.6 03/05/2007
PCT/DE/2007/001321
WO/2008/134999

14/05/2008 201541 C25B (2010.01)
ELECTRODE FOR MEMBRANE ELECTROLYSIS CELLS
INDUSTRIE DE NORA S.P.A
IT MI2007A000980 15/05/2007
PCT/EP/2008/055887
WO/2008/138945

02/06/2008 201542 G06F (2010.01)
AGGREGATING AND SEARCHING PROFILE DATA FROM MULTIPLE SERVICES
MICROSOFT CORPORATION
US 11/766363 21/06/2007
PCT/US/2008/065475
WO/2009/002658

29/05/2008 201543 A24D (2010.01)
CRENELLATED BANDED CIGARETTE PAPER
PHILIP MORRIS PRODUCTS S.A.
US 60/924825 01/06/2007
PCT/IB/2008/002463
WO/2008/146170

15/10/2009 201544 B60K (2010.01)
93 May 31, 2010
A VEHICULAR ACTIVATION SYSTEM
AND METHOD
SHAI COHEN

27/04/2008 201545 G02B (2010.01)
IMAGING SYSTEM AND METHOD FOR USE IN MONITORING A FIELD OF REGARD
D.V.P. TECHNOLOGIES LTD.
IL 182672 19/04/2007
IL 189832 28/02/2008
PCT/IL/2008/000554
WO/2008/129552

25/08/2005 201546 C07D (2010.01)
S-TRIAZOLYL ?-MERCAPTOACETANILDES AS INHIBITORS OF HIV REVERSE TRANSCRIPTASE
ARDEA BIOSCIENCES, INC.
US 60/604219 25/08/2004
US 60/604220 25/08/2004
US 60/686351 31/05/2005
PCT/US/2005/030259
WO/2006/026356

27/04/2008 201547 C02F (2010.01)
FILTER MEDIUM
H2Q WATER INDUSTRIES LTD.
US 60/907817 18/04/2007
PCT/IL/2008/000553
WO/2008/129551

94 May 31, 2010

"י"ח בכסיו תש"ע-ט

H2Q WATER INDUSTRIES LTD

SHAI COHEN

May 31, 2010

H2Q WATER INDUSTRIES LTD

SHAI COHEN

May 31, 2010
METHOD AND SYSTEM FOR VOLUME RENDERING
CAMERO-TECH LTD
US 11/785580 18/04/2007
PCT/IL/2008/000516
WO/2008/129538

METHOD AND SYSTEM FOR COMPRESSED IMAGING
OPTICAL COMPRESSED SENSING
US 60/907943 24/04/2007
PCT/IL/2008/000555
WO/2008/129535

STENTS HAVING BIODEGRADABLE LAYERS
MICELL TECHNOLOGIES, INC.
US 60/912394 17/04/2007
US 60/912408 17/04/2007
US 60/981445 19/10/2007
PCT/US/2008/060671
WO/2008/131131

ANTIBODIES AGAINST IL-25
MEDICAL RESEARCH COUNCIL
GB 0707505.4 18/04/2007
US 60/912474 18/04/2007
PCT/GB/2008/001365
WO/2008/129263
16/04/2008 201553
SPARSED U-TDOA WIRELESS LOCATION NETWORKS
TRUEPOSITION, INC
PCT/US/2008/060507
WO/2008/131020

16/04/2008 201554
SPARSED U-TDOA WIRELESS LOCATION NETWORKS
TRUEPOSITION, INC
PCT/US/2008/060528
WO/2008/131036

17/04/2008 201555
SPARSED U-TDOA WIRELESS LOCATION NETWORKS
TRUEPOSITION, INC
PCT/US/2008/060661
WO/2008/131122

17/04/2008 201556
SPARSED U-TDOA WIRELESS LOCATION NETWORKS
TRUEPOSITION, INC
US 11/736950 18/04/2007
PCT/US/2008/060665
WO/2008/131125

May 31, 2010
י"ה נכון למש"נ-2010
<table>
<thead>
<tr>
<th>Publication Date</th>
<th>Application Number</th>
<th>Classification</th>
<th>Inventor</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/05/2007</td>
<td>201557</td>
<td>A61K</td>
<td>EVONIK ROHM GMBH</td>
<td>SOLID DOSAGE FORMS COMPRISING AN ENTERIC COATING WITH ACCELERATED DRUG RELEASE</td>
</tr>
<tr>
<td>16/04/2008</td>
<td>201558</td>
<td>A61B</td>
<td>NEUROARM SURGICAL LTD, US</td>
<td>FRAME MAPPING AND FORCE FEEDBACK METHODS, DEVICES AND SYSTEMS</td>
</tr>
<tr>
<td>16/04/2008</td>
<td>201559</td>
<td>A61B</td>
<td>NEUROARM SURGICAL LTD, US</td>
<td>METHODS, DEVICES, AND SYSTEMS FOR NON-MECHANICALLY RESTRICTING AND/OR PROGRAMMING MOVEMENT OF A TOOL OF A MANIPULATOR ALONG A SINGLE AXIS</td>
</tr>
<tr>
<td>14/05/2008</td>
<td>201560</td>
<td>G01S</td>
<td>"ץ"בכניל יתשי"ט-ט</td>
<td>May 31, 2010</td>
</tr>
<tr>
<td>Publication Date</td>
<td>Classification</td>
<td>Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/04/2008</td>
<td>B60N (2010.01)</td>
<td>VEHICLE SEAT FOR REDUCING THE RISK OF SPINAL AND HEAD INJURIES OF PERSONNEL IN COMBAT VEHICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/05/2008</td>
<td>C07D (2010.01)</td>
<td>ARYLAMIDE PYRIMIDONE DERIVATIVES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/05/2008</td>
<td>A61K (2010.01)</td>
<td>COMPOSITION FOR TRANSMUCOSAL DELIVERY OF POLYPEPTIDES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methods and apparatus for selecting a target from radar tracking data

Raytheon Company

US 60/917782 14/05/2007
PCT/US/2008/063604
WO/2009/023322

Vehicle seat for reducing the risk of spinal and head injuries of personnel in combat vehicles

Ronald P. Dellanno

US 60/925346 19/04/2007
PCT/US/2008/004981
WO/2009/017523

Arylamide pyrimidine derivatives for the treatment of neurodegenerative diseases

Sanofi-Aventis

EP 07290625.8 16/05/2007
PCT/IB/2008/002446
WO/2008/155669

Composition for transmucosal delivery of polypeptides

Cephalon, Inc.

US 60/927006 01/05/2007
PCT/US/2008/005655
WO/2008/137054
01/05/2008 201564 C07D (2010.01)
P70 S6 KINASE INHIBITORS
ELI LILLY AND COMPANY
US 60/917331 11/05/2007
PCT/US/2008/062143
WO/2008/140947

04/06/2008 201565 C07K (2010.01)
COMPOSITION OF A FIRST NON-LABELED MONOCLONAL ANTIBODY BINDING TO A TUMOR ANTIGEN AND A NON-CROSS REACTIVE SECOND MONOCLONAL ANTIBODY LABELED WITH A NIR FLUORESCENCE LABEL
F. HOFFMANN-LA ROCHE AG
EP 07011087.9 06/06/2007
PCT/EP/2008/004456
WO/2008/148546

30/04/2008 201566 C07D (2010.01)
HETARYLANILINES AS MODULATORS FOR AMYLOID BETA F. HOFFMANN-LA ROCHE AG
EP 07108004.8 11/05/2007
PCT/EP/2008/055290
WO/2008/138753

21/04/2008 201569 C07D (2010.01)
2-PYRIDINE CARBOXAMIDE DERIVATIVES AS SODIUM CHANNEL MODULATORS
PFIZER LIMITED

May 31, 2010

"ת"ו בฐה יוהש-ינץ"
23/05/2008 201571 A61K (2010.01)
AN EXTENDED-RELEASE COMPOSITION COMPRISING A SOMATOSTATIN DERIVATIVE IN MICROPARTICLES
NOVARTIS AG
EP 07108796.9 24/05/2007
PCT/EP/2008/056347
WO/2008/142153

06/05/2008 201572 C07D (2010.01)
IMIDAZOQUINOLINES WITH IMMUNO-MODULATING PROPERTIES
DAINIPPON SUMITOMO PHARMA CO. LTD.
US 60/916586 08/05/2007
US 61/024957 31/01/2008
PCT/GB/2008/050328
WO/2008/135791

14/04/2008 201573 B23B (2010.01)
TOOL HOLDER DAMPENING SYSTEM
HAROLD D. COOK
US 11/787875 18/04/2007
US 12/002368 17/12/2007
PCT/US/2008/004771
WO/2008/130521

May 31, 2010
A COATED CUTTING TOOL AND METHOD OF PREPARING THE SAME

SANDVIK INTELLECTUAL PROPERTY AB
SE 0700947-5 18/04/2007
PCT/SE/2008/050442
WO/2008/130316

METHODS, DEVICES, AND SYSTEMS RELATING TO CAMERAS CONFIGURED TO BE POSITIONED WITHIN THE BORE OF A MAGNET AND MR BORE SPACE ILLUMINATION
NEUROARM SURGICAL LTD, US 60/912148 16/04/2007
PCT/IB/2008/003669
WO/2009/050589

SYSTEM, DEVICE AND METHOD FOR OPERATION OF INTERNAL COMBUSTION ENGINE
ZION BADASH
PCT/IL/2007/000479
WO/2008/010201

MICROBIAL POPULATION ANALYSIS

18/04/2008 201574 C23C (2010.01)
16/04/2008 201575 G06K (2010.01)
16/04/2007 201576 F02M (2010.01)
17/04/2008 201577 C12Q (2010.01)
VERENIGING VOOR CHRISTELIJK
HOGER ONDERWIJS,
WETENSCHAPPELIJK ONDERZOEK
EN PATIENTENZORG
EP 07075289.4 17/04/2007
PCT/EP/2008/003200
WO/2008/125365

16/04/2008 201578 A61B (2010.01)
METHODS, DEVICES, AND SYSTEMS
USEFUL IN REGISTRATION
NEUROARM SURGICAL LTD,
US 60/912140 16/04/2007
US 60/912169 17/04/2007
PCT/IB/2008/003353
WO/2009/040677

27/04/2008 201579 A61N (2010.01)
METHOD AND APPARATUS FOR
NERVE AND MUSCLE STIMULATION
AND PAIN TREATMENT
PAINLESS LTD.
US 60/912797 19/04/2007
PCT/IL/2008/000557
WO/2008/129555

15/05/2008 201580 G06F (2010.01)
A METHOD AND SYSTEM FOR
ORGANIZING AN IMAGE BASED
DATABASE
SUPERFISH LTD
US 60/938482 17/05/2007
PCT/IL/2008/000672
WO/2008/142675

May 31, 2010
PHARMACEUTICAL FORMULATIONS CONTAINING LIPOIC ACID DERIVATIVES
CORNERSTONE PHARMACEUTICALS, INC.
US 60/912605 18/04/2007
PCT/US/2008/060650
WO/2008/131114

CONTAINER FOR AN AUTOMATIC INJECTOR
MERIDIAN MEDICAL TECHNOLOGIES, INC.
US 60/925283 18/04/2007
PCT/US/2008/004936
WO/2008/130583

DISPOSABLE INJECTOR COMPRISING AT LEAST ONE DRAW HOOK AND A SLIDING WEDGE-TYPE GEAR FOR UNLOCKING A LOCKING ELEMENT
LTS-LOHMANN THERAPIE-SYSTEME AG
DE 102007018868.6 19/04/2007
PCT/EP/2008/002391
WO/2008/128615

CONTROLLED SYNTHESIS OF ZIPRASIDONE AND COMPOSITIONS THEREOF
17/02/2003

Page 103
May 31, 2010
<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Description</th>
<th>Inventor(s)</th>
<th>Filing Date</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>201587</td>
<td>A KIT FOR CLOTHESLINE DEVICE</td>
<td>BARZILY AVRAHAM MAYA</td>
<td>15/10/2009</td>
<td>May 31, 2010</td>
</tr>
<tr>
<td>201588</td>
<td>MULTIPLE LOCATION LOAD CONTROL SYSTEM</td>
<td>LUTRON ELECTRONICS CO., INC.</td>
<td>23/04/2008</td>
<td>May 31, 2010</td>
</tr>
<tr>
<td>201589</td>
<td>METHOD AND APPARATUS FOR PROTECTING SIMLOCK INFORMATION IN AN ELECTRONIC DEVICE</td>
<td>TELEFONAKTIEBOLAGET LM ERICSSON (PUBL.)</td>
<td>07/04/2008</td>
<td>May 31, 2010</td>
</tr>
<tr>
<td>Publication Date</td>
<td>Application No.</td>
<td>Classification</td>
<td>Inventor(s)</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>02/02/2006</td>
<td>201590</td>
<td>A61L (2010.01)</td>
<td>BIODEFENSE CORPORATION</td>
<td>ARTICLE PROCESSING APPARATUS AND RELATED METHODS</td>
</tr>
<tr>
<td>12/04/2005</td>
<td>201591</td>
<td>F16K (2010.01)</td>
<td>HYDROPAC/LAB PRODUCTS, INC.</td>
<td>FLUID DELIVERY VALVE METHOD</td>
</tr>
<tr>
<td>18/04/2008</td>
<td>201592</td>
<td>C12Q (2010.01)</td>
<td>ENZON PHARMACEUTICALS, INC.</td>
<td>STABLE RECOMBINANT ADENOSINE DEAMINASE</td>
</tr>
<tr>
<td>18/04/2008</td>
<td>201593</td>
<td>C12Q (2010.01)</td>
<td>ENZON PHARMACEUTICALS, INC.</td>
<td>COMPOSITIONS COMPRISING ADENOSINE DEAMINASE FOR USE IN TREATING TUMORS</td>
</tr>
<tr>
<td>Date</td>
<td>Number</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18/10/2009</td>
<td>201594</td>
<td>CUPBOARD WITH ADJUSTABLE SHELVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16/04/2008</td>
<td>201595</td>
<td>DEVICES FOR INTERFACING BETWEEN MANIPULATORS AND SURGICAL TOOLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30/04/2008</td>
<td>201596</td>
<td>WIRELESS COMMUNICATION SYSTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/04/2008</td>
<td>201597</td>
<td>BYCYCLIC COMPOUND AND PHARMACEUTICAL USE THEREOF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WO/2008/136382

18/10/2009 201598 E04H (2010.01)
BURIAL SYSTEMS AND CONSTRUCTION METHODS THEREFOR
WOLFMAN INDUSTRIES LTD

WO/2009/017524

21/04/2008 201599 G01S (2010.01)
CURVED SENSOR ARRAY APPARATUS AND METHODS
LUCID DIMENSIONS, LLC
US 60/925512 20/04/2007
US 61/067420 28/02/2008
PCT/US/2008/005129
WO/2009/017524

WO/2008/129554

21/04/2008 201600 C12N (2009.01)
STEM CELL- DERIVED RETINAL PIGMENT EPITHELIAL CELLS
HADASIT MEDICAL RESEARCH SERVICES AND DEVELOPMENT LTD
US 60/907818 18/04/2007
PCT/IL/2008/000556
WO/2008/129554

WO/2008/136382

17/04/2008 201601 C07K (2010.01)
NOVEL FULLY HUMAN ANTI-VAP-1 MONOCLONAL ANTIBODIES

107

Yad b’Yad, May 31, 2010
BIOTIE THERAPIES CORPORATION
FI 20075278 20/04/2007
US 60/907904 20/04/2007
PCT/FI/2008/050199
WO/2008/129124

16/04/2008 201602 A61B (2010.01)
ADAPTIVE SURGICAL TOURNIQUET APPARATUS AND METHOD
WESTERN CLINICAL ENGINEERING LTD
US 11/737258 19/04/2007
PCT/CA/2008/000718
WO/2008/128332

14/04/2008 201603 C07D (2010.01)
CRYSTALLINE FORMS OF TOPOTECAN HYDROCHLORIDE AND PROCESSES FOR MAKING THE SAME
SCINOPHARM TAIWAN, LTD
US 60/925280 19/04/2007
PCT/US/2008/004840
WO/2008/130534

17/04/2008 201604 H01L (2010.01)
THIN-FILM PV
NANOCO TECHNOLOGIES LIMITED
US 60/923984 18/04/2007
US 60/991510 30/11/2007
GB 0723539.3 01/12/2007
PCT/GB/2008/001349
WO/2008/129250

May 31, 2010
METHODS, DEVICES AND SYSTEMS FOR AUTOMATED MOVEMENTS INVOLVING MEDICAL ROBOTS
NEUROARM SURGICAL LTD.
US 60/912142 16/04/2007

COMMUNICATION SYSTEM FOR SPEECH DISABLED INDIVIDUALS
O'BRIEN TECHNOLOGIES, INC.
US 60/907857 19/04/2007
PCT/US/2008/061069 WO/2008/131365

CONNECTOR DESIGN TECHNOLOGY AND INNOVATION LIMITED
GB 0707438.8 18/04/2007
PCT/GB/2008/001363 WO/2008/129261

SELF SERVICE ADVERTISING METHOD AND SYSTEM
YITSHAK BARASHI
IL IL182702 19/04/2007
PCT/IL/2008/005533 WO/2008/129543

16/04/2008 201605 A61B (2010.01)

21/04/2008 201607 H04M (2010.01)

18/04/2008 201608 F16L (2010.01)

17/04/2008 201609 G09B (2010.01)
18/10/2009
USE OF HOT GASES AND DEVICES
ISRAEL HIRSHBERG

17/04/2008
LIPOIC ACID DERIVATIVES
CORNERSTONE PHARMACEUTICALS, INC.
US 60/912598 18/04/2007
PCT/US/2008/060655
WO/2008/131117

03/03/2008
METHOD FOR PASSIVE DETERMINATION OF TARGET DATA
ATLAS ELEKTRONIK GMBH
DE 102007019444.9 25/04/2007
PCT/EP/2008/001651
WO/2008/131824

21/04/2008
METHODS FOR COUNTING CELLS
THE GENERAL HOSPITAL CORPORATION
US 60/925368 20/04/2007
PCT/US/2008/005066
WO/2008/130655

19/10/2009

May 31, 2010
14/05/2008 201615 C07C (2010.01)
METHOD FOR PRODUCING BENZALDEHYDE COMPOUND
SUMITOMO CHEMICAL COMPANY, LIMITED
JP 2007-135064 22/05/2007
PCT/JP/2008/059288
WO/2008/143264

25/04/2008 201616 B32B (2010.01)
FLEXIBLE MULTI-LAYER MATERIAL, PREFERABLY FOR AN INFLATABLE BALLOON CASING, AND METHOD FOR THE PRODUCTION OF AN INFLATABLE CASING
ALAVI, KAMAL
CH 00702/07 28/04/2007
PCT/EP/2008/003347
WO/2008/131916

24/04/2008 201618 A01C (2010.01)
AN IRRIGATION DEVICE
H2OPTIFLOW LIMITED
GB 0707932.0 24/04/2007
PCT/GB/2008/001475
WO/2008/129310

May 31, 2010

CYLINDER LOCK PROTECTIVE SYSTEM
MOSHE AHARON

METHOD FOR PRODUCING BENZALDEHYDE COMPOUND
SUMITOMO CHEMICAL COMPANY, LIMITED

FLEXIBLE MULTI-LAYER MATERIAL, PREFERABLY FOR AN INFLATABLE BALLOON CASING, AND METHOD FOR THE PRODUCTION OF AN INFLATABLE CASING
ALAVI, KAMAL

AN IRRIGATION DEVICE
H2OPTIFLOW LIMITED

March 31, 2010

"%h dans his"-n-
METHOD AND SYSTEM FOR EARS HEATING INTEGRATED WITH HEAD ACCESSORIES COMBINED WITH VOCAL SYSTEM

AVIRAM KELICH

QUINOLINE-CARBOXAMIDE DERIVATIVES AS P2Y12 ANTAGONISTS

SANOFI AVENTIS

PROCESS FOR SPRAYING A LAYER CONTAINING FAT AND SUGAR ON A SURFACE OF AN EDIBLE PRODUCT GENERALE BISCUIT

INSECT RESISTANT PLANT

SYNGENTA PARTICIPATIONS AG

May 31, 2010
06/06/2008 201623 C07D (2010.05)
FUNGICIDE HETEROCYCLYL-
PYRIMIDINYL-AMINO DERIVATIVES
BAYER CROPSCIENCE SA
EP 07356077.3 08/06/2007
PCT/EP/2008/057126
WO/2008/148889

15/05/2008 201624 H04L (2010.05)
ENHANCED PILOT SIGNAL
QUALCOMM INCORPORATED
US 60/939035 08/05/2007
US 60/978068 05/10/2007
US 61/014706 18/12/2007
US 61/016101 21/12/2007
US 61/038660 21/03/2008
US 12/113810 01/05/2008
US 12/113900 01/05/2008
US 12/113903 01/05/2008
PCT/US/2008/063800
WO/2008/144450

14/05/2008 201625 C07D (2010.05)
ARYLAMIDE PYRIMIDONE
COMPOUNDS
SANOFI-AVENTIS
EP 07290626.6 16/05/2007
PCT/IB/2008/002458
WO/2008/155670

"ה巴斯ן התש"ע-נ, 2010" May 31, 2010
02/05/2008 201627 C07D (2010.01)

PROCESSES FOR PREPARING (R)-2-METHYL PYRROLIDINE AND (S)-2-METHYL PYRROLIDINE AND TARTRATE SALTS THEREOF
CEPHALON, INC.
US 60/927356 03/05/2007
PCT/US/2008/005702
WO/2008/137087

15/04/2008 201630 A61B (2010.01)

METHOD, APPARATUS AND SYSTEM FOR PREDICTING ELECTROMECHANICAL DISSOCIATION
CHEETAH MEDICAL LTD
US 60/907847 19/04/2007
PCT/IL/2008/000509
WO/2008/129535

18/04/2008 201631 H04R (2010.01)

VOICE AND POSTITION LOCALIZATION
EPOS DEVELOPMENT LTD
US 60/907846 19/04/2007
PCT/EP/2008/054721
WO/2008/128989

16/04/2008 201632 A61K (2010.01)

USE OF A COMPOSITION COMPRISING FORMOTEROL AND BECLOMETASONE DIPROPIONATE FOR THE PREVENTION AND/OR TREATMENT OF AN EXACERBATION OF ASTHMA

Sh-mobile מבריחים הזקטרה מפורטורל
בכלהמטאזון ילדים מתעינת מולע ה/וא
טרופל בוחרה של אסטמה
"יו Başkanı התש"ת-נ" May 31, 2010
CHIESI FARMACEUTICI S.P.A.
EP 07007930.6 19/04/2007
PCT/EP/2008/003012
WO/2008/128685

20/05/2008 201633 H05K (2010.01)
METHOD FOR THE PRODUCTION OF METAL-COATED BASE LAMINATES
BASF SE
EP 07108827.2 24/05/2007
PCT/EP/2008/056146
WO/2008/142064

27/06/2008 201634 A24D (2010.01)
PATTERNED WRAPPAR PAPER WITH ELEVATED CHALK LEVEL
PHILIP MORRIS PRODUCTS S.A.
US 60/929452 28/06/2007
PCT/IB/2008/002635
WO/2009/001223

24/04/2008 201635 A61K (2010.01)
MEDICAMENTS AND METHODS TO TREAT AUTOIMMUNE DISEASE AND CANCER
DIAMYD THERAPEUTICS AB
US 60/926121 24/04/2007
US 60/993840 13/09/2007
PCT/IB/2008/001830
WO/2008/129426

05/05/2007 201636 C07C (2010.01)

May 31, 2010
PROCESS FOR SELECTIVE AROMATICS DISPROPORTIONATION WITH INCREASED CONVERSION
UOP LLC

PCT/US/2007/068310
WO/2008/136829

25/06/2008
CHO CELL
F. HOFFMANN-LA ROCHE AG
EP 07012773.3 29/06/2007
PCT/EP/2008/005134
WO/2009/003621

02/10/2003
MODIFIED PROTEASE COMPRISING MUTATIONS IN A WILDTYPE PROTEASE SCAFFOLD AND USE THEREOF
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
US 60/415388 02/10/2005
PCT/US/2003/031719
WO/2004/031733

24/01/2003
INTERMEDIATES FOR PREPARATION OF SHORT-ACTING SEDATIVE HYPNOTIC AGENTS
THERAVANCE, INC.
US 60/351385 25/01/2002
US 60/379219 09/05/2002
PCT/US/2003/002227
WO/2004/037750

May 31, 2010
GLYCAN MODIFIED SOLUBLE RECEPTORS AND BINDING PROTEINS AND THEIR USE
YEDA RESEARCH AND DEVELOPMENT CO. LTD
IL 182956 03/05/2007
PCT/IL/2008/000574
WO/2008/135972

YEDA RESEARCH AND DEVELOPMENT CO. LTD

MODIFIED VACCINIA ANKARA VIRUS VARIANT
BAVARIAN NORDIC A/S
DK PA200001764 23/11/2000
PCT/EP/2001/013628
WO/2002/042480

PHILIP MORRIS PRODUCTS S.A.
US 60/924676 25/05/2007
PCT/IB/2008/001839
WO/2008/146158

BEARING FRAME FOR A PANEL SUCH AS A PHOTOELECTRIC PANEL AND BUILDING EXTERNAL WALL INCLUDING SUCH FRAME
SOLARTE
FR 0754611 20/04/2007

"י"ה בכסות המש"ת-ינואר 2010

May 31, 2010
17/04/2008 201645 H01L (2010.01)
BEARING FRAME FOR AN ELECTRICALLY ACTIVE PANEL SUCH AS PHOTOVOLTAIC PANEL SOLARTE FR 0754616 20/04/2007
PCT/FR/2008/050681 WO/2008/145898

18/04/2008 201646 H01L (2010.01)
STRUCTURE FOR MOUNTING ON A BUILDING WALL FRAMES FOR HOLDING PANELS SUCH AS PHOTOVOLTAIC PANELS SOLARTE FR 0754606 20/04/2007
PCT/FR/2008/050699 WO/2008/145913

17/04/2008 201647 H04R (2010.01)

19/04/2008 201648 H04L (2010.01)

May 31, 2010
METHOD AND APPARATUS FOR INDICATING A TEMPORARY BLOCK FLOW USING A PIGGYBACKED ACK/NACK FIELD INTERDIGITAL TECHNOLOGY CORPORATION

US 60/913179 20/04/2007
US 60/974293 21/09/2007
US 60/981980 23/10/2007
PCT/US/2008/005122 WO/2008/130694

KINASE INHIBITORS USEFUL FOR THE TREATMENT OF MYELOPROLIFERATIVE DISEASES AND OTHER PROLIFERATIVE DISEASES DECIPHERA PHARMACEUTICALS, LLC

US 60/913216 20/04/2007
PCT/US/2008/060833 WO/2008/131227

DYNAMIC AND ADJUSTABLE SUPPORT DEVICES THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY

US 60/926561 28/04/2007
PCT/US/2008/005488 WO/2008/134064

PERSONALITY-BASED DEVICE MICROSOFT CORPORATION

19/05/2008 201652 G10L (2010.01)

A61K (2010.01) 201650

A61F (2010.01) 201651

G10L (2010.01) 201652
20/10/2009 201653 F16L (2010.01)
UNIVERSAL FAN BLADE MOUNT AND CEILING FAN EMPLOYING SAME
YUVAL GORALI
US 61/108228 24/10/2008

17/04/2008 201654 C01B (2010.01)
METHOD FOR MAKING A GAS FROM AN AQUEOUS FLUID, PRODUCT OF THE METHOD, AND APPARATUS THEREFOR
LSG PARTNERS, LLC
US 11/738476 21/04/2007
PCT/US/2008/060666 WO/2008/131126

03/04/2008 201655 F24J (2010.01)
DEVICE FOR MOUNTING SOLAR MODULES
HATICON GMBH
DE 102007020234.4 23/04/2007
DE 102007006153.6 23/04/2007
PCT/DE/2008/000590 WO/2008/128506

02/05/2008 201656 H04B (2010.01)
ז"ח הכימי תשמ''ת-2010
METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING CONTROL CHANNELS BY RESTRICTING A SET OF THE CONTROL CHANNELS IN A WIRELESS COMMUNICATION SYSTEM

SAMSUNG ELECTRONICS CO., LTD.

KR 1020070042817 02/05/2007
KR 1020070079269 07/08/2007
PCT/KR/2008/002507
WO/2008/136616

03/06/2008 201657
GRATING-BASED SENSOR COMBINING LABEL-FREE BINDING DETECTION AND FLUORESCENCE AMPLIFICATION AND READOUT SYSTEM FOR SENSOR SRU BIOSYSTEMS, INC.
US 11/818742 15/06/2007
PCT/US/2008/007031
WO/2008/156560

09/12/2002 201658
PHARMACEUTICAL NANOPARTICULATE COMPOSITION OF A TACHYKININ RECEPTOR ANTAGONIST MERCK SHARP & DOHME CORP.
US 60/340040 10/12/2001
PCT/US/2002/041655
WO/2003/049718

09/04/2004 201659
CGRP RECEPTOR ANTAGONISTS MERCK SHARP & DOHME CORP.

2010.01 (G01N)
BIDIRECTIONAL PROJECTING GAUGE
GONTMACHER ALEXANDER
IL 000000000000 18/10/2009

THIA(DIA) ZOLES AS FAST DISSOCIATING DOPAMINE 2 RECEPTOR ANTAGONISTS
JANSSEN PHARMACEUTICA, N.V.
EP 07106706.0 23/04/2007
WO/2008/128996

PYRIDINE DERIVATIVES AS FAST DISSOCIATING DOPAMINE 2 RECEPTOR ANTAGONISTS
JANSSEN PHARMACEUTICA, N.V.
EP 07106702.9 23/04/2007
WO/2008/128994
4-ALKOXYPYRIDAZINE DERIVATIVES AS FAST DISSOCIATING DOPAMINE 2 RECEPTOR ANTAGONISTS
JANSSEN PHARMACEUTICA, N.V.
EP 07106704.5 23/04/2007
WO/2008/128995

21/04/2008 201664 A61K (2010.01)
TAPENTADOL FOR TREATING PAIN FROM ARTHRITIS
GRUNENTHAL GMBH
DE 102007019417.1 23/04/2007
WO/2008/128739

14/04/2008 201665 G09B (2010.01)
EDUCATIONAL EQUIPMENT WITH MULTIPLE CONFIGURATIONS
JEAN-LOUP DRUON
FR 0703040 26/04/2007
WO/2008/142292

27/05/2008 201666 C07K (2010.01)
MONOCLONAL ANTIBODIES AGAINST CLAUDIN-18 FOR TREATMENT OF CANCER
JOHANNES GUTENBERG-UNIVERSITAT MAINZ OF
EP 07010622.4 29/05/2007
US 60/932099 29/05/2007
WO/2008/145338
COMBAT ACTION SELECTION USING SITUATIONAL AWARENESS
MICROSOFT CORPORATION
US 11/820968 21/06/2007
PCT/US/2008/066532
WO/2009/002706

PIPE COUPLING HAVING MOVABLE GRIPPING BODIES
VICTAULIC COMPANY
US 60/938003 15/05/2007
PCT/US/2008/063587
WO/2008/144332

PIPERAZINE COMPOUNDS WITH HERBICIDAL ACTION
BASF SE
EP 07110913.6 22/06/2007
PCT/EP/2008/057830
WO/2009/000757

PROCESS FOR PREPARING 2-AMINO-5-CYANOBENZOIC ACID DERIVATIVES
E.I. DU PONT DE NEMOURS AND COMPANY, INC.
US 60/937815 29/06/2007
PCT/US/2008/067826
WO/2009/006061

May 31, 2010
20/06/2008 201671 C07D (2010.01)
NAPHTHALENE ISOXAZOLINE INVERTEBRATE PEST CONTROL AGENTS
E.I. DU PONT DE NEMOURS AND COMPANY, INC.
US 60/937285 26/06/2007

19/02/2008 201672 H01L (2010.01)
POLYSILICON PLANARIZATION SOLUTION FOR PLANARIZING LOW TEMPERATURE POLYSILICON THIN FILM PANELS
MALLINCKRODT BAKER, INC.
US 60/914105 26/04/2007
PCT/US/2008/002169 WO/2008/133767

29/10/2002 201673 C07K (2010.01)
METHODS AND MEANS FOR PRODUCING PROTEINS WITH PREDETERMINED POST-TRANSLATIONAL MODIFICATIONS
CRUCELL HOLLAND B.V.
NL PCT/NL01/00792 29/10/2001
NL PCT/NL02/00257 19/04/2002

29/10/2002 201674 C07K (2010.01)
ינ"ח בחסי החש"-ט 2010
May 31, 2010

 vários elementos do corpo. O corpo humano

 varios elementos do corpo. O corpo humano
METHODS AND MEANS FOR PRODUCING PROTEINS WITH PREDETERMINED POST-TRANSLATIONAL MODIFICATIONS
CRUCELL HOLLAND B.V.
NL PCT/NL/01/00792 29/10/2001
NL PCT/NL/02/00257 19/04/2002

22/10/2009 201675 G07B (2010.01)
A CASH REGISTER AND METHOD THEREFOR
ALON SHARABI

27/04/2008 201676 A61K (2010.01)
ORAL DELIVERY OF PROTEINS AND PEPTIDES
TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD.
US 60/914134 26/04/2007
PCT/IL/2008/000539 WO/2008/132727

05/05/2008 201677 G01N (2010.01)
MULTI-IMMUNOAFFINITY BASED ANTIGEN IDENTIFICATION
BIOSYSTEMS INTERNATIONAL SAS
US 60/915941 04/05/2007

May 31, 2010
USE OF FIBROBLAST GROWTH FACTOR 7 (FGF7) AND OF THE RECEPTOR FGFR2B AS BIOMARKERS
BAYER SCHERING PHARMA AKTIENGESELLSCHAFT
DE 102007026877.9 08/06/2007
US 60/944153 15/06/2007
PCT/EP/2008/004675
WO/2008/148582

DUCK EMBRYONIC DERIVED STEM CELL LINES FOR THE PRODUCTION OF VIRAL VACCINES
VIVALIS
EP 07300979.7 24/04/2007
PCT/EP/2008/054912
WO/2008/129058

METHOD AND APPARATUS FOR CONTAMINATION-FREE TRANSFER OF A HAZARDOUS DRUG
PLASTMED LTD.
IL 182743 23/04/2007
IL 189584 18/02/2008
PCT/IL/2008/000550
WO/2008/129550

SOUND AND VISION SYSTEM FOR AUDIENCE

May 31, 2010
CYCLIC PEPTIDE CXCR4 ANTAGONISTS
ELI LILLY AND COMPANY
US 60/940802 30/05/2007
US 60/940996 31/05/2007
PCT/US/2008/064177
WO/2008/150689

DIHYDROQUINONE AND DIHYDRONAPHTHRIDINE INHIBITORS OF JNK
F. HOFFMANN-LA ROCHE AG
US 60/930054 14/05/2007
PCT/EP/2008/055807
WO/2008/138920

SYSTEM AND METHOD FOR HEART MONITORING
LIFESCIENCE SOLUTIONS, LLC
PCT/US/2008/061260
WO/2008/131413

20/05/2008 201685 A61P (2010.01)

13/05/2008 201686 C07D (2010.01)

23/04/2008 201687 A61B (2010.01)

25/04/2008 201688 C07D (2010.01)

May 31, 2010
<table>
<thead>
<tr>
<th>Date</th>
<th>Application Number</th>
<th>International Application Number</th>
<th>Classification</th>
<th>Inventor</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/05/2008</td>
<td>201689</td>
<td>A61K (2010.01)</td>
<td>MODIFIED-RELEASE PARTICLES BASED ON POLY ElectroLYTES AND ON AN ACTIVE PRINCIPLE AND PHARMACEUTICAL FORMULATIONS CONTAINING THESE PARTICLES FLAMEL TECHNOLOGIES</td>
<td>SHIONOGI & CO., LTD.</td>
</tr>
<tr>
<td>21/05/2008</td>
<td>201690</td>
<td>A61K (2010.01)</td>
<td>RAF INHIBITORS FOR THE TREATMENT OF THYROID CANCER</td>
<td>NOVARTIS AG</td>
</tr>
<tr>
<td>02/05/2008</td>
<td>201691</td>
<td>C07D (2010.01)</td>
<td>9-(PYRAZOL-3-YL)-9H-PURINE-2-AMINE AND 3-(PYRAZOL-3-YL)-3H-IMIDAZO [4,5-B]PYRIDIN-5-AMINE DERIVATIVES AND THEIR USE FOR THE TREATMENT OF CANCER</td>
<td>ASTRazeneca AB</td>
</tr>
</tbody>
</table>
11/03/2008 201692 H04L (2010.01)
WIRELESS BROADBAND NETWORK
MANAGEMENT
UBO WIRELESS PTY LIMITED
AU 20072006 30/04/2007
PCT/AU/2008/00330
WO/2008/131473

21/05/2008 201693 A47J (2010.01)
DEVICE FOR GRINDING COFFEE OR
OTHER ALIMENTARY SUBSTANCES
RHEA VENDORS S.P.A.
EP 07010231.4 23/05/2007
PCT/IB/2008/001264
WO/2008/142536

03/06/2008 201694 A61M (2010.01)
INJECTION DEVICE
BAYER SCHERING PHARMA
AKTIENGESELLSCHAFT
DE 202007008068.9 08/06/2007
DE 202007012637.9 08/09/2007
PCT/EP/2008/004412
WO/2008/148518

22/04/2008 201695 C07C (2010.01)
A HALOGENATED ARYL ETHER Oligomer and Flame Retardant Compositions Comprising the Same
CHEMTURA CORPORATION
US 60/926374 25/04/2007
US 12/148188 16/04/2008
PCT/US/2008/061097
WO/2008/134294

24/04/2007 201696 C07D (2010.01)
SUBSTITUTED METHYLAMINE COMPOUND AND TRIAZINE DERIVATIVE AND PROCESS FOR PRODUCING THE SAME
NIPPON SODA COMPANY LTD.
PCT/JP/2007/058842
WO/2008/136093

08/05/2008 201697 G06F (2010.01)
APPARATUS FOR CONTROLLING PROCESSOR EXECUTION IN A SECURE ENVIRONMENT
ECHOSTAR TECHNOLOGIES L.L.C.
US 60/917582 11/05/2007
PCT/US/2008/063089
WO/2008/141100

14/05/2008 201698 G06F (2010.01)
METHODS AND APPARATUS FOR TESTING SOFTWARE WITH REAL-TIME SOURCE DATA FROM A PROJECTILE
RAYTHEON COMPANY
US 60/917743 14/05/2007
PCT/US/2008/006183

May 31, 2010
METHOD AND APPARATUS FOR PERFORMING IDLE HANDOFF IN A MULTIPLE ACCESS COMMUNICATING SYSTEM
QUALCOMM INCORPORATED
US 660436 07/06/1996
PCT/US/1997/009903
WO/1997/047154

ACTUATING DEVICE
HECKLER & KOCH GMBH
DE 102007019310.8 24/04/2007
PCT/EP/2008/003281
WO/2008/128773

METHOD AND APPARATUS FOR COMPENSATION FOR WEATHER-BASED ATTENUATION IN A SATELLITE LINK
SHIRON SATELLITE COMMUNICATIONS (1996) LTD.
US 60/907930 23/04/2007
PCT/IB/2008/051537
WO/2008/129509

SITE-SPECIFIC INCORPORATION OF REDOX ACTIVE AMINO ACIDS INTO PROTEINS
THE SCRIPPS RESEARCH INSTITUTE
US 60/511532 14/10/2003
PCT/US/2004/034089
WO/2005/038002

May 31, 2010
12/06/2008 201706 G06Q (2010.01)
RESPONSIVE CUTSCENES IN VIDEO GAMES
MICROSOFT CORPORATION
US 11/766483 21/06/2007
PCT/US/2008/066649
WO/2009/002713

12/06/2008 201707 G06Q (2010.01)
LIVE GAME LOBBY
MICROSOFT CORPORATION
US 11/766466 21/06/2007
PCT/US/2008/066652
WO/2008/157206

28/05/2008 201708 A61K (2010.01)
IMPROVED TASTE-MASKING EXTRUDATES
BAYER ANIMAL HEALTH GMBH
DE 102007026550.8 08/06/2007
PCT/EP/2008/004218
WO/2008/148484

25/04/2008 201709 C02F (2010.01)
WATER TREATMENT SYSTEM
RESOURCE BALLAST TECHNOLOGIES (PROPRIETARY) LIMITED
PCT/IB/2008/051604
WO/2008/132681
16/05/2008

ZIPRASIDONE FORMULATIONS
SCIDOSE LLC.
US 60/930824 18/05/2007
PCT/US/2008/006268
WO/2008/143960

27/04/2008

A SYSTEM FOR DELIVERING THERAPEUTIC AGENTS INTO LIVING CELLS AND CELLS NUCLEI
SEGEV LABORATORIES LIMITED
US 60/907929 23/04/2007
US 60/924490 17/05/2007
PCT/IL/2008/000548
WO/2008/129548

25/04/2008

HYBRID PHOTOVOLTAIC CELLS AND RELATED METHODS
NANOCO TECHNOLOGIES LIMITED
US 60/926103 25/04/2007
PCT/GB/2008/001457
WO/2008/132455

26/03/2008

COMMUNICATION SYSTEM AND METHOD FOR DETERMINING CHANNEL PARAMETERS
ROHDE & SCHWARZ GMBH & CO. KG
DE 102007019292.6 24/04/2007
PCT/EP/2008/002382
WO/2008/128614

May 31, 2010

METHOD FOR PRODUCTION OF MOTH ORCHID HAVING MODIFIED FLOWER COLOR
ISHIHARA SANGYO KAISHA LTD.
JP 2007-116396
PCT/JP/2008/058126
WO/2008/136434

HIGHLY STABLE ELECTROLYTIC WATER WITH REDUCED NMR HALF LINE WIDTH
AKUA TEC H S.R.L.
US 60/926182
PCT/EP/2008/003383
WO/2008/131936

HYDROGEN-CATALYST REACTOR
BLACKLIGHT POWER, INC.
US 60/913556 24/04/2007
US 60/952305 27/07/2007
US 60/954426 07/08/2007
US 60/953573 09/08/2007
US 60/955465 13/08/2007
US 60/956821 20/08/2007
US 60/957540 23/08/2007
US 60/972342 14/09/2007
US 60/974191 21/09/2007
US 60/975330 26/09/2007
US 60/976004 28/09/2007
US 60/978435 09/10/2007
US 60/987552 13/11/2007
US 60/987946 14/11/2007

May 31, 2010
<table>
<thead>
<tr>
<th>Date</th>
<th>Application Number</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/11/2007</td>
<td>60/989677</td>
<td>US</td>
</tr>
<tr>
<td>30/11/2007</td>
<td>60/991434</td>
<td>US</td>
</tr>
<tr>
<td>03/12/2007</td>
<td>60/991974</td>
<td>US</td>
</tr>
<tr>
<td>05/12/2007</td>
<td>60/992601</td>
<td>US</td>
</tr>
<tr>
<td>10/12/2007</td>
<td>61/012717</td>
<td>US</td>
</tr>
<tr>
<td>19/12/2007</td>
<td>61/014860</td>
<td>US</td>
</tr>
<tr>
<td>26/12/2007</td>
<td>61/016790</td>
<td>US</td>
</tr>
<tr>
<td>09/01/2008</td>
<td>61/020023</td>
<td>US</td>
</tr>
<tr>
<td>15/01/2008</td>
<td>61/021205</td>
<td>US</td>
</tr>
<tr>
<td>17/01/2008</td>
<td>61/021808</td>
<td>US</td>
</tr>
<tr>
<td>18/01/2008</td>
<td>61/022112</td>
<td>US</td>
</tr>
<tr>
<td>23/01/2008</td>
<td>61/022949</td>
<td>US</td>
</tr>
<tr>
<td>24/01/2008</td>
<td>61/023297</td>
<td>US</td>
</tr>
<tr>
<td>25/01/2008</td>
<td>61/023687</td>
<td>US</td>
</tr>
<tr>
<td>30/01/2008</td>
<td>61/024730</td>
<td>US</td>
</tr>
<tr>
<td>01/02/2008</td>
<td>61/025520</td>
<td>US</td>
</tr>
<tr>
<td>14/02/2008</td>
<td>61/028605</td>
<td>US</td>
</tr>
<tr>
<td>21/02/2008</td>
<td>61/030468</td>
<td>US</td>
</tr>
<tr>
<td>06/03/2008</td>
<td>61/064453</td>
<td>US</td>
</tr>
<tr>
<td>21/03/2008</td>
<td>61/064723</td>
<td>US</td>
</tr>
<tr>
<td>17/04/2008</td>
<td>61/071191</td>
<td>US</td>
</tr>
<tr>
<td>21/11/2007</td>
<td>60/989767</td>
<td>US</td>
</tr>
<tr>
<td>30/11/2007</td>
<td>60/991434</td>
<td>US</td>
</tr>
</tbody>
</table>

16/05/2008 | **201717** | G06F (2010.01) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A KVM SWITCH SYSTEM WITH A SIMPLIFIED EXTERNAL CONTROLLER</td>
<td>مورbah ماتh KVM um bahr وحوزن معفم</td>
<td>AVOCENT CORPORATION</td>
</tr>
<tr>
<td>US 11/802015</td>
<td>18/05/2007</td>
<td>PCT/US/2008/006377</td>
</tr>
<tr>
<td>WO/2008/144027</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23/05/2008 | **201718** | A47J (2010.01) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLIANCE FOR CONDITIONING A MILK-BASED LIQUID</td>
<td>الإمارات لمثب ام والتحيل على ممس الماء</td>
<td>NESTEC S.A.</td>
</tr>
<tr>
<td>DE 202007007340.2</td>
<td>23/05/2007</td>
<td></td>
</tr>
<tr>
<td>DE 202007007339.9</td>
<td>23/05/2007</td>
<td></td>
</tr>
<tr>
<td>DE 202007007338.0</td>
<td>23/05/2007</td>
<td></td>
</tr>
</tbody>
</table>

137 May 31, 2010
METHODS OF PROTEIN PRODUCTION USING ANTI-SENECENCE COMPOUNDS

METHODS OF PROTEIN PRODUCTION USING ANTI-SENECENCE COMPOUNDS

USE OF LOW TEMPERATURE AND/OR LOW PH IN CELL CULTURE

ISOQUINOLINONE DERIVATIVES AS NK3 ANTAGONISTS

MILLING CUTTER
ISCAR LTD.
NOTICE UNDER SECTION 26 OF THE PATENTS LAW, 5727-1967

The applications, particulars of which are set out below, have been accepted pursuant to Section 17 of the Patents Law. Any person wishing to oppose the grant of a patent on any of the applications published here, may, within three months from the date of this journal, give to the Commissioner of Patents notice under Section 30 of the Patents Law, in the manner prescribed in regulations 57 et seq of the Patents Regulations, 5728-1968

Particulars of the applications, where applicable, are given in the following order:

[11] [21] Number of application
[54] Title of invention
[22] Application date
[31] [32] [33] Number and date of foreign application – convention country.

*[51] Int.Cl.
[61] Application for patent of addition
[62] Divisional application
[71] Applicant
[72] Inventor
[87] International Publication Number
[74] Address for service
[57] Abridgement of invention (in the language in which the specification is drawn up)

*Note: patent applications published in this journal were classified according to the International Classification version that was in force when this journal was prepared.
This specification was examined in accordance with regulation 35 of the Patent Regulations, 5728 - 1968.

The parent application from which this application has been divided has not yet been published.

The applications for division from this application have not yet been published.

[11][21] 108328

[54] PHARMACEUTICAL COMPOSITIONS CONTAINING TEMOZOLOMIDE AND ATASE INHIBITOR FOR POTENTIATION OF TEMOZOLOMIDE TOXICITY TO HUMAN TUMOR CELLS

[22] 13.01.1994
[51] Int. Cl.(2009.01) C07D 487/04
[71] CANCER RESEARCH CAMPAIGN TECHNOLOGY LIMITED, UNITED KINGDOM
[74] EITAN, PEARL, LATZER AND COHEN ZEDEK,

Aיתן, פארל, לזרן ואצ'ן זנאק

רַדְרוֹבָּן וַאֶזְקֵי

י"ה תַּהְפּוֹח"כ-2010

May 31, 2010
The toxicity of temozolomide an anti-tumor agent useful in the treatment of various mammalian neoplasms, can be potentiated by the prior administration of an ATase inhibiting agent, i.e., O\(^6\)-benzylguanine.

Proteins from the genus Photorhabdus are toxic to insects upon exposure. Photorhabdus luminescens (formerly Xenorhabdus luminescens) have been found in mammalian clinical samples and as a bacterial symbiont of entomopathogenic nematodes of genus Heterorhabditis. These protein toxins can be applied to, or genetically engineered into, insect larvae food and plants for insect control.
A remote control catheterization system (20) for coaxially inserting into the vasculature of a patient at least a first elongated probe (26) and a second elongated probe (42), the system comprising:

a propelling device (28) for controllably inserting the elongated probes, comprising at least a first mechanism for propelling the first elongated probe and a second mechanism for propelling the second elongated probe, the propelling mechanism operating coaxially;

a control console (34), in communication with the propelling device, and comprising user control which are operated by a user of the system remote from the patient to control insertion of the elongated probes into the vasculature by the propelling device. wherein the propelling device comprising a force sensor which measures a force applied during insertion of the elongated probe, the force sensor comprises a torque gauge which measures a required to move the elongated probe.
ARTIFICIAL CHROMOSOMES, USES THEREOF AND METHODS FOR PREPARING ARTIFICIAL CHROMOSOMES

682080 15.07.1996 US
695191 07.08.1996 US

[51] Int. Cl.(2009.01) A01H 05/00, A01K 67/02, 67/027, C12N 05/10, 15/09, 15/11, 15/62, 15/82, 15/85

[71] THE BIOLOGICAL RESEARCH CENTER OF THE HUNGARIAN ACADEMY OF SCIENCES, HUNGARY
CHROMOS MOLECULAR SYSTEMS, INC., CANADA

[87] WO/1997/040183

[74] REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

[57] Methods for preparing cell lines that contain artificial chromosomes, methods for preparation of artificial chromosomes, methods for purification of artificial chromosomes, methods for targeted insertion of heterologous DNA into artificial chromosomes, and methods for delivery of the chromosomes to selected cells and tissues are provided. Also provided are cell lines for use in the methods, and cell lines and chromosomes produced by the methods. In particular, satellite artificial
chromosomes that, except for inserted heterologous DNA, are substantially composed of heterochromatin, are provided. Methods for use of the artificial chromosomes, including for gene therapy, production of gene products and production of transgenic plants and animals are also provided.

PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF PROSTATE HYPERTROPHY AND PROSTATE CANCER

[22] 01.09.1997
60/043228 10.04.1997 US

Int. Cl.(2009.01) A61K 38/09, 45/06, A61P 13/08, 35/00, C07K 07/23

AETERNAL ZENTARIS GMBH,
GERMANY

WO/1998/01078

REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69170

A regime for therapeutic management of a benign prostatic hyperplasia and prostatic cancer employs Cetrorelix alone or in combination with alpha-reductase inhibitors or alpha-receptor blocking agents. The regimen reduces the volume of the prostate and avoids the side effects associated with testosterone levels being in a castration range. Cetrorelix is administered at dosages between 0.5 mg/day and 20 mg/week or about 0.014 mg/kg body weight per day to 0.30 mg/kg body weight per week or at levels of about 25 to 120 mg of Cetrorelix per month or 0.376 mg/kg to 1.71 mg/kg per month. Cetrolix can be administered with alpha-reductase inhibitors or alpha-receptor blocking agents.

The applications for division from this application have not yet been published.

145 May 31, 2010
APPARATUS AND METHOD FOR SELECTIVELY POSITIONING A DEVICE AND MANIPULATING IT

An apparatus, comprising: a cylindrically shaped motor (1), said motor having a longitudinal bore (5), said motor provided with a motor friction area disposed within said longitudinal bore; a guide wire (2) disposed within said longitudinal bore, said guide wire and said longitudinal bore sized and adapted to impart friction between said friction area of said motor and said guide wire in an amount sufficient to permit said motor to change position relative to said guide wire by crawling against said guide wire when said motor is energized; and further comprising a biasing means to bias said guide wire against said friction area.
USE OF BUPRENORPHINE IN THE PREPARATION OF A TRANSDERMAL DELIVERY SYSTEM FOR TREATING PAIN

The use of buprenorphine in the preparation of a medicament for a method of effectively treating pain in humans is achieved by administering buprenorphine in a manner indicative of first order pharmacokinetics over an initial three-day dosing interval, such that a maximum plasma concentration from about 20 pg/ml to about 1052 pg/ml is attained, and thereafter maintaining the administration of buprenorphine for at least an additional two-day dosing interval in a manner indicative of zero order kinetics, such that the patients experience analgesia throughout the at least two-day additional dosing interval.

The applications for division from this application have not yet been published.
A method and apparatus are described for operating an ink-jet printer (10) by:
controlling the printer's nozzles (20) to print a pattern of test marks (24) on a test strip
(25) while relative movement is effected between the printhead (11) and the test strip
(25); sensing and analyzing the pattern of test marks (24) with respect to a number of
printing parameters to detect errors and to determine whether such errors are within
predetermined tolerance limits; automatically controlling the plurality of nozzles (20)
to compensate for those errors within the predetermined tolerance limits; and
automatically terminating the operation of the printer (10) upon detection of an error
exceeding a predetermined tolerance limit.
The invention concerns the use of low-molecular-weight heparins for preventing and treating cerebral edemas.

DNAAs are provided, whose genes are induced at least by Wnt-1. Also provided are nucleic acid molecules encoding those polypeptides, as well as vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides, and methods for producing the polypeptides.
PHARMACEUTICAL COMPOSITIONS CONTAINING INHIBITORS OF THE LYMOPHOTOXIN PATHWAY

Therapeutic uses of inhibitors of the Lymphotoxin Pathway to treat tumors, specifically to treat follicular lymphomas.
HERB EXTRACTS FOR TREATING PSORIASIS

[51] Int. Cl.(2009.01) A61K 35/00, 36/00
[71] ATTAREX LTD.
[72] STEPHEN FULDER, OMAR SAID, KHALID KHALIL, ERAN COHEN
[74] OMAR SAID,
P.O.B 2205
KFAR KANNA 16930

An extract for topical use having anti-psoriatic activity obtained from any combination of the groups of plants, selected from the group comprising Eruca sp., Nigella sp., Citrus medica/limonum/acida sp. and Hypericum sp., their leaves, fruits and seeds.

METHOD OF AND APPARATUS FOR MEASURING BATTERY CAPACITY

[22] 15.06.1999
[51] Int. Cl.(2010.01) G01R 13/36
[71] KOREA KUMNHO PETROCHEMICAL CO., LTD., REPUBLIC OF KOREA
[72] CHUL OH YOON, YEVGEN BARSUKOV, JONG HYUN KIM
[87] WO/1999/066340
[74] DR. MARK FRIEDMAN LTD., MOSHE AVIV TOWER, 54TH FLOOR,
7 JABOTINSKY ST., RAMAT GAN 52520

Provided is a method of measuring battery capacity using parameters obtained from a voltage response signal of a current waveform or an impedance spectrum generated thereof where the method includes the steps of: measuring voltage response signals based on a current waveform applied to a primary or secondary battery; obtaining...
parameters of an equivalent circuit composed of model parameters such as resistors, capacitors and transmission lines either directly from voltage response or after its conversion to frequency dependent impedance; and determining the unknown battery capacity from the voltage response characteristics based on a correlation between the measured capacity and the model parameters, which correlation is previously determined by a real-time discharge method, thereby takes a shorter time than a real-time discharge method and delivering efficiency and reliability in determining model parameters of an equivalent circuit which are in close correlation with the charge/discharge condition of the battery.

[54] PHARMACEUTICAL COMPOSITIONS COMPRISING AN AMINO ACID SEQUENCE COMPRISING SOLUBLE LDCAM POLYPEPTIDE

[22] 05.08.1999
[51] Int. Cl.(2009.01) A61K 38/17, C07K 14/47, 16/18
[71] IMMUNEX CORPORATION, U.S.A.
[87] WO/2000/008158

The invention is directed to LDCAM as a purified and isolated protein, the DNA encoding the LDCAM, host cells transfected with cDNAs encoding LDCAM, processes for preparing LDCAM polypeptides and compositions and methods for treating utilizing LDCAM polypeptides.
Methods are disclosed for the treatment and prevention of disorders and conditions including, but are not limited to, erectile dysfunction, affective disorders, weight gain, cerebral functional disorders, pain, obsessive-compulsive disorder, substance abuse, chronic disorders, anxiety, eating disorders, migraine, and incontinence. The methods comprise the administration of a dopamine reuptake inhibitor and optionally an additional pharmacologically active compound. Pharmaceutical compositions and dosage forms are also disclosed that comprise a dopamine reuptake inhibitor and optionally an additional pharmacologically active compound. Preferred dopamine reuptake inhibitors are racemic or optically pure sibutramine metabolites like desmethylsibutramine and didesmethylsibutramine and pharmaceutically acceptable salts, solvates, and clathrates thereof. Preferred additional pharmacologically active compounds include drugs that affect the central nervous system, such as 5-HT3 antagonists.
The present invention provides a 120-kDa protein gene of *Ehrlichia canis*, amplified by PCR using primers derived from the DNA sequences flanking the *Ehrlichia chaffeensis* 120-kDa protein gene. The recombinant *E. canis* 120-kDa protein contains 14 tandem repeat units with 36 amino acids each. The repeat units are hydrophilic and predicted to be surface-exposed. Also disclosed is that the recombinant *E. canis* 120-kDa protein is antigenic and reacts with sera from dogs convalescent from canine ehrlichiosis.
Particulate labels that can be individually identified comprise particulate supports to which are bound at least two distinguishable signal-generating moieties, such as fluorophores emitting at different wavelengths, which signals are detectable and measurable in situ. By varying the ratio and/or amounts of the signal-generating moieties, a multiplicity of different and distinguishable labels is obtained. Each different label can then be coupled to a different reagent and the individual interactions of each reagent with a target observed in parallel.
The present invention makes use of resonant acoustic and/or acousto-EM energy applied to inorganic or biologic structures for the detection and/or identification, and for augmentation and/or disruption of function within the biologic structure. In particular, the invention provides a method of generating resonant acoustic and/or acousto-EM energy in biologic structures such as virus, bacteria, fungi, worms and tumors for the detection and disruption of these structures. Moreover, the invention provides a method of augmenting functions of biologic structures such as bone through the generation of resonant acoustic and/or acousto-EM energy in the structure. Systems are also provided for the generation and detection of resonant acoustic and/or resonant acousto-EM energy.
A mutant cholera holotoxin featuring a point mutation at amino acid 29 of the A subunit, wherein the glutamic acid residue is replaced by an amino acid other than aspartic acid, is useful as an adjuvant in an antigenic composition to enhance the immune response in a vertebrate host to a selected antigen from a pathogenic bacterium, virus, fungus or parasite. In a particular embodiment, the amino acid 29 is histidine. The mutant cholera holotoxin may contain at least one additional mutation in the A subunit at a position other than amino acid 29. The antigenic composition may include a second adjuvant in addition to the mutant cholera holotoxin.
of the gene extends beyond the 5’ terminus of the yeast gene; deleting or inactivating a part of the N-terminal region of the TPS gene extending beyond the 5’ terminus of the yeast gene, preferably the complete extending part thereof, in order to achieve an increased trehalose-6-phosphate synthase activity; cloning the thus modified gene into an expression vector under the control of a constitutive, inducible and/or organ-specific promoter; transforming a plant cell or tissue with the thus obtained expression vector; and regenerating a complete plant from the transformed plant cell or tissue.

13-MEMBERED AZALIDES, THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM

The invention relates to a method of preparing compounds of formula (1) and to pharmaceutically acceptable salts thereof. The compounds of formula (1) are antibacterial agents that may be used to treat various bacterial and protozoa infections. The invention also relates to pharmaceutical compositions containing the compounds of formula (1) and to methods of treating bacterial protozoa infections by administering the compounds of formula (1). The invention also relates to methods of preparing the compounds of formula (1) and to intermediates useful in such preparation.
A chaperone protein Q2 and β-amyloid can form a complex. This complex can be detected in a biological sample, such as, for example, tissues or fluids from a mammal. Q2 levels can also be detected in a biological sample. A method for determining the Q2 level in a biological sample and comparing that level to a normal Q2 level can be used to detect, screen, diagnose, or otherwise determine a person's susceptibility to Alzheimer's disease such as, for example, the presence or absence of Alzheimer's disease, of symptoms of this disease, of factors leading to or associated with this disease, of likelihood of developing this disease, and the like. In one embodiment, a decline in Q2 level correlates to an increased likelihood of developing Alzheimer's disease. In another embodiment, a decline in Q2 level correlates to an increase in β-amyloid aggregation. The method may further include screening for an apolipoprotein E genotype, which is associated with Alzheimer's disease.
The present application describes nitrogen containing heterobicyclics and derivatives thereof, or pharmaceutically acceptable salt forms thereof, which are useful as inhibitors of factor Xa.

The invention relates to a catheter, in particular for endovascular applications, comprising a long and flexible, hollow, tubular body (1) having an insertion end (4) and a connection end (3) intended to remain outside the body. According to the invention, the catheter comprises in the insertion end (4) at least two elements (9, 12)
which are expandable/contractible by means of external operation. Said elements are located at a distance from each other, one upstream and the other downstream of a given section of a vessel. With the catheter it is possible to operate in the section comprised between the two expandable elements (9, 12) and, if necessary, in the intermediate arterial branch which, on account of the two elements (9, 12) upstream and downstream, will have a zero flow.
The invention relates to a powdered human milk fortifier comprising a protein component typically present in an amount of from about 24 wt/wt% to about 55 wt/wt% of the fortifier powder, and a fat component typically present in an amount of from about 1 wt/wt% to about 30 wt/wt% of the fortifier powder and a carbohydrate component present in a quantity of from about 15 wt/wt% to about 75 wt/wt% of the fortifier powder. Preferably, the powdered human milk fortifier is provided in a unit dose container which holds from about 0.5 gm to about 10 gm of powder. The instant invention also relates to a method of providing nutrition to preterm infants by adding a fortifier powder to human milk and administering the fortified human milk to a premature infant. The invention further provides a method of promoting growth of a premature infant by administering fortified human milk to a premature infant.
Site-specific isotopically-labeled valine, leucine, and isoleucine and biosynthetic precursors for these amino acids are provided. The amino acids are labeled with 13C or 14C at the methyl group carbon atom(s) most remote from the carboxyl group. Also disclosed are the biochemical precursors of these labeled amino acids, 2-keto-4-(nC)butyric acid and 2-keto-3-(nC-methyl)-4-(nC)-butyric acid in which n, at each occurrence, is 13 or 14. Also disclosed are proteins, protein fragments, and polypeptides containing these site-specifically isotopically labeled amino acids, and methods for preparing the biochemical precursors, the amino acids, and the proteins, protein fragments, and polypeptides.
Protection of excitable tissues provides treatment of hypoxia, seizure disorders, neurodegenerative diseases, hypoglycemia, and neurotoxin poisoning. Enhancement of function is useful in learning and memory. The invention is also directed to compositions and methods for facilitating the transport of molecules across endothelial cell tight junction barriers, such as the blood-brain barrier, by association of molecules with an erythropoietin receptor activity modulator, such as an erythropoietin.

ENZYME BIOSENSOR AND METHOD FOR ANALYZING SAMPLES FOR THE PRESENCE OF ORGANOPHOSPHORUS OR ORGANOSULFUR COMPOUNDS AND A METHOD FOR MAKING SAID BIOSENSOR

Methods, compositions and materials useful in the detection of organophosphorous and organosulfur are disclosed. In particular, biosensors wherein a porous e.g. foam or a non-porous support having an enzyme covalently immobilized upon or within are disclosed. The biosensors exhibit enzymatic stability at extreme temperatures and/or denaturing conditions, and similar kinetic characteristics of the soluble form of the enzymes utilized. The enzyme does not leach from the porous or non-porous support and the material retains enzymatic activity after prolonged storage. Differential biosensors are also disclosed.
The invention concerns hyperbranched copolyamides (HBPA), the method for obtaining them and their use as additive, in particular as melted viscosity modifier in thermoplastic polymer compositions. Said copolyamide is obtained by reacting a monomer (I): A-R-Bf where A and B = polymerisation functions of first and second types respectively, capable of reacting with each other; R = hydrocarbon entity and f = total number of B per monomer (preferably 2 m f m(F) 10); with a monomer (II): A′-R′-B′ or the corresponding lactams, where A′, B′, R′ having the same definition as above respectively for A, B, R. Said HBPA has a I/II molar ratio such that 0.125 m(F) I/II m(F) 2. One of the entities R or R′ of (I) or (II) is aliphatic, cycloaliphatic or arylaliphatic. For example: A = NH₂₂ and B = COOH or A = COOH and B = NH₂ with F = 2. A′ = NH₂ and B′ = COOH or A′ = COOH and B′ = NH₂. A-R-B₂, for example: 5-aminoisophthalic acid or 3,5-diaminobenzoic acid and A′-R′-B′ = e-caprolactam. The invention also concerns the yarns, fibres, moulded parts obtained.
from polymer compositions (for example, P.A) containing the inventive HBPA as additive.

[11][21] 146486

[54] 1-(SULFONAMIDE AND SULFAMIDE SUBSTITUTED)-1H-
IMIDAZO[4,5-C]QUINOLINE-4-
AMINES AND PHARMACEUTICAL
COMPOSITIONS CONTAINING
THEM

[22] 08.06.2000
09/589216 07.06.2000 US
[51] Int.Cl.(2009.01) A61K 31/4745, A61P 31/12, 35/00, 37/02, C07D 471/04
[71] COLEY PHARMACEUTICAL GROUP, INC., U.S.A.
[87] WO/2000/076519
[74] REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

Imidazoquinoline and tetrahydroimidazoquinoline compounds that contain sulfonamide or sulfonamide functionality at the 1-position are useful as immune response modifiers. The compounds and compositions of the invention can induce the biosynthesis of various cytokines and are useful in the treatment of a variety of conditions including viral diseases and neoplastic diseases.

[11][21] 146659

[54] METHODS FOR PREPARING A POROUS MATRIX OF DRUG

167 May 31, 2010
Drugs, especially low aqueous solubility drugs, are provided in a porous matrix form, preferably microparticles, which enhances dissolution of the drug in aqueous media. The drug matrices preferably are made using a process that includes (i) dissolving a drug, preferably a drug having low aqueous solubility, in a volatile solvent to form a drug solution, (ii) combining at least one pore forming agent with the drug solution to form an emulsion, suspension, or second solutions, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the porous matrix of drug. The pore forming agent can be either a volatile liquid that is immiscible with the drug solvent or a volatile solid compound, preferably a volatile salt. In a preferred embodiment, spray drying is used to remove the solvents and the pore forming agent. The resulting porous matrix has a faster rate of dissolution following administration to a patient, as compared to non-porous matrix forms of the drug. In a preferred embodiment, microparticles of the porous drug matrix are reconstituted with an aqueous medium and administered parenterally, or processed using standard techniques into tablets or capsules for oral administration. Paclitaxel or docetaxel can be provided in a porous matrix form, which allows the drug to be formulated without solubilizing agents and administered as a bolus.
Recombinant parainfluenza virus (PIV) are provided in which expression of the C, D and/or V translational open reading frame(s) (ORFs) is reduced or ablated to yield novel PIV vaccine candidates. Expression of the C, D and/or V ORF(s) is reduced or ablated by modifying a recombinant PIV genome or antigenome, for example by introduction of a stop codon, by a mutation in an RNA editing site, by a mutation that alters the amino acid specified by an initiation codon, or by a frame shift mutation in the targeted ORF(s). Alternatively, the C, D and/or V ORF(s) is deleted in whole or in part to render the protein(s) encoded thereby partially or entirely non-functional or to disrupt protein expression altogether. C, D and/or V ORF(s) deletion and knock out mutants possess highly desirable phenotypic characteristics for vaccine development. These deletion and knock out mutations changes specify one or more desired phenotypic changes in the resulting virus or subviral particle. Vaccine candidates are generated that show a change in viral growth characteristics, attenuation, plaque size, and/or a change in cytopathogenicity, among other novel phenotypes. A variety of additional mutations and nucleotide modifications are provided within the C, D and/or V ORF(s) deletion or ablation mutant PIV of the invention to yield desired phenotypic and structural effects.
IMMUNOGENIC COMPOSITION COMPRISING AN INFECTIOUS BOVINE-HUMAN CHIMERIC RESPIRATORY SYNCYTIAL VIRUS AND POLYNUCLEOTIDE MOLECULE COMPRISING THE GENOME OF SAID VIRUS

Chimeric human-bovine respiratory syncytial virus (RSV) are infectious and attenuated in humans and other mammals and useful in vaccine formulations for eliciting an anti-RSV immune response. Also provided are isolated polynucleotide molecules and vectors incorporating a chimeric RSV genome or antigenome which includes a partial or complete human or bovine RSV 'background' genome or antigenome combined or integrated with one or more heterologous gene(s) or genome segment(s) of a different RSV strain. Chimeric human-bovine RSV of the invention include a partial or complete 'background' RSV genome or antigenome derived from or patterned after a human or bovine RSV strain or subgroup virus combined with one or more heterologous gene(s) or genome segment(s) of a different RSV strain or subgroup virus to form the human-bovine chimeric RSV genome or antigenome. In preferred aspects of the invention, chimeric RSV incorporate a partial or complete bovine RSV background genome or antigenome combined with one or more heterologous gene(s) or genome segment(s) from a human RSV. Genes of interest include any of the NS1, NS2, N, P, M, SH, M2(ORF1), M2(ORF2), L, F or G genes or a genome segment including a protein or portion thereof. A variety of additional mutations and nucleotide modifications are provided within the human-bovine chimeric RSV.
chimeric RSV of the invention to yield desired phenotypic and structural effects.

A system and method for user interface mirroring are provided. User interface objects are defined according to an object hierarchy that defines a logical relationship between a root element and one or more child elements, additionally, the root element includes a directional property that is inherited by the child elements. A layout manager obtains the logical relationship and the specified directional property and correlates a set of physical coordinates each display object according to the directional property, while maintaining the logical relationship.
A mechanical water still (10) includes an imprevious dome-like upper surface (12) and a membrane base (14) that is coupled (26) to the imprevious dome-like structure (12) to form, when inflated, a chamber (20). The membrane base (14) supports a water pervaporation process therethrough. A water collection well (16) has an opening into which water droplets condensed from the water pervaporation process collect. The water collection well (16) is sited within the membrane base (14) and generally extends outwardly and downwardly from the membrane base (14), as shown (in fig.1).

In use, a contaminated water source (24) is brought into, ideally, complete contact with the membrane base (14), with the water collection well (16) arranged both to act as a heat sink into the water source (24) and to provide stability to the water still (10) when floating and immersed in the water source (24).
The present invention is directed to cell surface antigens found on myeloma cells and on ovarian cancer cells that are recognized by monoclonal antibodies, and antibody binding fragments thereof, as described. The monoclonal antibodies of the invention are capable of being used for therapeutic, screening, diagnostic and cell purification purposes. A representative and exemplified monoclonal antibody of the present invention recognizes and binds to an epitope common to a surface antigen that is expressed on multiple myeloma cells and to a surface antigen that is expressed on ovarian cancer cells. The function of this monoclonal antibody both in vivo and in vitro is demonstrated.
A switching interface (20) for a packet-switching network (22), including a packet switch (24), adapted to convey data packets generated in the packet-switching network; and a central processing unit (CPU) (30), adapted to control the packet switch, such that the packet switch and CPU are implemented as a single integrated circuit device. Preferably, the single device also includes a channel adapter (26).
There is disclosed a cleaning article (1) including a brush portion (26). The brush portion (26) has a plurality of strips (12, 17) and at least one layer of a fiber bundle (3, 4, 6).
Fusion proteins for use as ligand-dependent transcriptional are provided. The fusion proteins include a nucleotide binding domain operatively linked to a ligand-binding domain. They also can include a transcription regulating domain. The nucleotide binding domain is a zinc-finger peptide that binds to a targeted contiguous nucleotide sequence of from 3 to 18 nucleotides are provided. The fusion proteins are used for gene therapy. Also provided are polynucleotides encoding the fusion proteins, expression vectors, and transfected cells.

[57] An edible, hardenable coating composition containing microcrystalline cellulose and carrageenan and at least one of a strengthening polymer, a plasticizer, a surface active agent or a combination thereof. The coating composition of the present invention may be applied to pharmaceutical and veterinary solid dosage forms, confectionery, seeds, animal feed, fertilizers, pesticide tablets, and foods and provides an elegant prompt

57

Edward, Hardenable coating composition containing microcrystalline cellulose and carrageenan and at least one of a strengthening polymer, a plasticizer, a surface active agent or a combination thereof.

[54] EDIBLE COATING COMPOSITION

[22] 07.02.2000

[51] Int. Cl.(2009.01) A61K 09/00
[61] 144352
[71] FMC CORPORATION, U.S.A.
[87] WO/2001/032150

[74] LUZZATTO & LUZZATTO, INDUSTRIAL PARK, OMER, P.O.B. 5352, BEER-SHEVA 84152

[57] An edible, hardenable coating composition containing microcrystalline cellulose and carrageenan and at least one of a strengthening polymer, a plasticizer, a surface active agent or a combination thereof. The coating composition of the present invention may be applied to pharmaceutical and veterinary solid dosage forms, confectionery, seeds, animal feed, fertilizers, pesticide tablets, and foods and provides an elegant prompt

176 May 31, 2010
release coating which does not retard the release of active ingredients from the coated substrate.

METHOD AND SYSTEM FOR EVALUATING OPTICAL DISTURBANCES OCCURING IN A SUPERSONIC FLOW FIELD

A method of evaluating optical disturbances occurring in a supersonic flow field around a solid body, comprising the steps of:
(a) performing a computational fluid dynamics (CFD) calculation to obtain a three-dimensional index-of-refraction field outside the solid body; and
(b) performing at least one ray tracing calculation based on said index-of-refraction field to obtain a numerical estimate of the optical disturbances.
New substituted 4-(phenyl N-alkyl)-piperazine and 4-(phenyl-N-alkyl)-piperidine compounds of Formula (1) wherein X is N, CH, or C, however X may only be C when the compound comprises a double bind at the dotted line; R1 is CF3, OSO2CF3, OSO2CH3, SO2R7, COR7, CN, OR3, NO2, CONHR3, 3-thiophene, 2-thiophene, 3-furane, 2-furane, F, Cl, Br, or I; R2 is F, Cl, Br, or I; R3 is F, Cl, Br, I, CN, CF3, CH3, OH, and NH2; R3 and R4 are independently H or a C1-C4 alkyl; R5 is a C1-C4 alkyl, an allyl, CH2SCH3, CH2CH2OCH3, CH2CH2CH2F, CH2CF3, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, or -(CH2)-R6; R6 is a C3-C6 cycloalkyl, 2-tetrahydrofurane, or 3-tetrahydrofurane; R7 is a C1-C3 alkyl, CF3, or N(R4)2, and pharmaceutically acceptable salts thereof are disclosed. Also pharmaceutical compositions comprising the above compounds and methods wherein the above compounds are used for treatment of disorders in the central nervous system are disclosed.
FOR PRODUCING SAID POLYPEPTIDE

[22] 15.02.2001
 60/198489 18.04.2000 US
[51] Int. Cl.(2009.01) A61K 38/17, C07K 14/47, C12N 05/10, 15/12, G01N 33/50
[71] INSERM
 AVENTIS PHARMA S.A., FRANCE

[87] WO/2001/060857
[74] LUZZATTO & LUZZATTO,
 INDUSTRIAL PARK, OMER,
 P.O.B. 5352,
 BEER-SHEVA 84152

The invention concerns novel compounds and their uses, in particular pharmaceutical, diagnostic or as pharmacological targets. More particularly, the invention concerns a novel protein, called PAP1, and novel peptides and compounds capable of modulating at least partially parkin gene activity.

The applications for division from this application have not yet been published

APPARATUS FOR ERASING ROAD LANE LINES

[22] 20.08.2002
[51] Int. Cl.(2009.01) E01H 01/05
[71] ZAMIR MANOR
[74] REINHOLD COHN AND PARTNERS,
 26A HABARZEL ST.,
 RAMAT HACHAYAL 69710

An apparatus for erasing a road marking on a road lane comprising:
a chassis adapted to travel over said road lane;
a heating source mounted to the chassis; and
at least one positively driven rotatable brush mounted to said chassis, said at least one brush having bristles adapted for being heated directly by the heating source and

May 31, 2010
contactable with said road marking for applying heat thereto for removing the marking from said road, such that the only portion of the road that is significantly heated is that portion contacted by the bristles.

[54] METHODS FOR MAKING TRANSPLASTOMIC PLANTS

Disclosed are methods for transforming plastids and moving transformed plastids from one plant to another. Also disclosed are transplastomic plants, parts thereof, and seed derived therefrom. Further disclosed is a cell or protoplast of a plant, or a culture thereof (e.g., a callus culture) wherein the cell or protoplast contains a plastid obtained from a cell of a genetically distinct plant and that contains a nucleic acid of interest.

[54] METHOD FOR DIAGNOSING IMMUNOLOGIC FOOD SENSITIVITY

Disclosed are methods for diagnosing immunologic food sensitivities.
The invention includes novel methodology for diagnosing immunologic food or drug sensitivities. The method for diagnosing food sensitivities includes using diagnoses of other related disorders, such as microscopic colitis or other chronic immunologic/autoimmune syndromes, chronic diarrhea, irritable bowel syndrome, and hepatitis C and other hepatic diseases, Crohn's disease, alcoholism, and other idiopathic neuropsychiatric and neurologic disorders, as indicators in the diagnosis of the food sensitivity. Additionally, failure to respond to or a relapse after treatment for microscopic colitis with bismuth subsalicylate is disclosed by the present invention as being a further indicator in the diagnosis of immunologic food sensitivity. Finally, the presence of certain HLA-DQ alleles, particularly HLA-DQ1,3; -DQ1,7; -DQ1,8; and -DQ1,9, HLA-DQ1,1, and at least two subtypes of the HLA-DQ1 allele identified by molecular analysis as HLA-DQB1*0501 and HLA-DQB1*0602, as indicators in diagnosing immunologic food sensitivity, particularly gluten sensitivity or celiac sprue, and in diagnosing the related disease of microscopic colitis and other autoimmune disorders is also disclosed by the invention. A method for food sensitivity panel testing (for sensitivities other than gluten sensitivity) by detecting IgA antibodies in serum is also disclosed. A method for testing stool samples for the presence of particular antibodies, which is more sensitive and less invasive than prior art testing methods, is also disclosed for diagnosing immunologic food sensitivities. These methods of diagnosis may be used alone or in combination to further enhance the accuracy of diagnosis.
The present invention relates to a method for the production of recombinant human blood clotting factors, in particular of factor VIII and factor IX, utilizing an immortalized human cell line stably expressing viral transcription activator proteins and carrying a vector having a promoter functionally linked to a DNA sequence coding for a blood coagulating factor, provided that said promoter is not a viral promoter which is stimulated by said viral transcription activator proteins; an immortalized human cell line carrying said vector; factor VIII muteins particularly suitable for the above production method; pharmaceutical compositions comprising such factor VIII muteins and the use of such factor VIII muteins for preparing a medicament for treating hemophilia.
If the quality metrics fail to match, the receiving terminal sends a request for retransmission of the packet. The transmitting terminal determines which packet needs to be retransmitted based on the request for retransmission. If delivery of the packet in accordance with the aforementioned description fails, retransmission in accordance with conventional sequence-number-based schemes, e.g., radio link protocol, is attempted.

The applications for division from this application have not yet been published.

[11][21] 152284

[54] OXAZOLIDINONE DERIVATIVES, PROCESS FOR THEIR PREPARATION, PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND USE THEREOF IN THE MANUFACTURE OF MEDICAMENTS AND AS MEDICAMENTS FOR THE PRODUCTION OF AN ANTIBACTERIAL EFFECT

23.04.2001
[51] Int. Cl.(2009.01) A61K 31/42, C07D 413/00
[71] ASTRAZENECA AB, SWEDEN
[87] WO/2001/081350
[74] S. HOROWITZ & CO.,
31 AHAD HAAM STREET
P.O. BOX 2499
TEL AVIV 65202

Compounds of formula (I), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof, wherein HET is an N-linked 5-membered heteroaryl ring.
optionally substituted on a C atom by an oxo or thioxo group; and/or by 1 or 2(1-4C) alkyl groups; and/or on an available nitrogen atom by (1-4C)alkyl; or HET is an N-linked 6-membered heteroaryl ring containing up to three nitrogen heteroatoms in total, optionally substituted on a C atom as above; Q is selected from, for example, (Q1), R2 and R3 are independently hydrogen or fluoro; T is selected from a range of groups, for example, of formula (TC5), wherein Rc is, for example, R13CO-, R13SO2- or R13CS-; wherein R13 is, for example, optionally substituted (1-10C)alkyl or R14C(O)O(1-6C)alkyl wherein R14 is optionally substituted (1-10C)alkyl; are useful as antibacterial agents; and processes for their manufacture and pharmaceutical compositions containing them are described.

THERMAL HEAT PROCESS FOR PREPARING EFFERVESCENT GRANULES

Disclosed here are effervescent granules having a controllable rate of effervescence. In some embodiments, the such granules comprise an acidic agent, an alkaline agent, a pharmacologically active agent, hot-melt extrudable binder capable of forming a eutectic mixture with the acidic agent and, optionally, a plasticizer. The effervescent granules are made by a hot-melt extrusion process. The present invention also provides a thermal heat process for preparing a pharmacologically active agent containing effervescent granule. In certain aspects, the granules contain pharmacologically active...
agents such as narcotics, antidiarrheal agents, antiviral agents, anxiolytic agents, a cholesterol lowering agent, an alpha adrenergic blocking agent, a phenanthrene derivative. By way of example, some of the narcotics that may be included in the granules and in the process of preparing the granules include, by way of example: phenanthrene derivatives (e.g., morphine sulfate), and morphine derivatives (e.g., hydromorphone hydrochloride).

MAMMALIAN CYTOKINE RECEPTOR SUBUNIT PROTEINS, RELATED REAGENTS AND PHARMACEUTICAL COMPOSITIONS COMPRISING THE SAME

[54] MAMMALIAN CYTOKINE RECEPTOR SUBUNIT PROTEINS, RELATED REAGENTS AND PHARMACEUTICAL COMPOSITIONS COMPRISING THE SAME

[22] 10.05.2001
[51] Int.Cl.(2008.04) A61K 38/17, 393/95, C07K 147/15, 16/18, C12N 15/12
[71] SCHERING CORPORATION, U.S.A.
[87] WO/2001/085790
[74] DR. SHLOMO COHEN & CO.,
124 IBN GABIROL ST.,
P.O.B. 11490,
TEL AVIV 62038
[57] Nucleic acids encoding mammalian, e.g., primate, receptors, purified receptor proteins and fragments thereof. Antibodies, both polyclonal and monoclonal, are also provided. Methods of using the compositions for both diagnostic and therapeutic utilities are described.

The applications for division from this application have not yet been published

185 May 31, 2010
METHOD FOR IDENTIFYING A MOLECULE INVOLVED IN LIPID REGULATION AND METHOD FOR IDENTIFYING A PATIENT SUSCEPTIBLE TO DISEASES MEDIATED BY LIPIDS

25.05.2001
26.05.2000
US

INT. CL.(2009.01) C07K 14/435, 14/705, C12N 15/12, G01N 33/53

OSCIENT PHARMACEUTICALS CORPORATION, U.S.A.
CREIGHTON UNIVERSITY, U.S.A.

WO/2001/092891

REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

The present invention relates to the high bone mass (HBM) gene, the corresponding wild-type gene (Zmax1), and mutants thereof. The genes identified in the present invention are implicated in regulation of physiological lipid levels, and thereby lipid-mediated diseases and conditions. The invention also provides nucleic acids, including coding sequences, oligonucleotide primers and probes, proteins, cloning vectors, expression vectors, transformed hosts, methods of developing pharmaceutical compositions, methods of identifying molecules involved in lipid level regulation in a subject. In preferred embodiments, the present invention is directed to methods for treating and preventing atherosclerosis, arteriosclerosis cardiovascular disease, atherosclerotic and arteriosclerotic associated conditions.
The invention concerns quinazoline derivatives of Formula (I) wherein each of Q1, Z, m, R1, R2, R3 and Q2 have any of the meanings defined in the description; processes for their preparation, pharmaceutical compositions containing them and their use in the manufacture of a medicament for use as an anti-invasive agent in the containment and/or treatment of solid tumour disease.
USE OF BIPHENYL METHANE COMPOUNDS IN THE MANUFACTURE OF MEDICAMENTS FOR THE TREATMENT OF ALZHEIMER'S DISEASE

The invention includes; a method of modulating a level of chaperone protein, a method of modulating a level of ERP57, a method of alleviating a symptom of a disease associated with decreased levels of chaperone proteins, and a method of alleviating a symptom of Alzheimer's disease. The methods include administering to a patient a substituted biphenylmethane compound. Preferably the compound is an analog to methoxychlor. More preferably the compound is methoxychlor. The invention also includes pharmaceutical compositions. The pharmaceutical compositions include substituted biphenylmethanes and a pharmaceutically acceptable carrier. Preferably the pharmaceutical compositions include methoxychlor analogs and a pharmaceutically acceptable carrier. More preferably the pharmaceutical compositions include methoxychlor and a pharmaceutically acceptable carrier.
The invention relates to compounds of formula (I) which are useful for elevating the plasma level of growth hormone in a mammal as well as for the treatment of growth hormone secretion deficiency, growth retardation in child and metabolic disorders associated with growth hormone secretion deficiency.

\[
\text{Graphic representation of formula (I)}
\]
A system for optimizing the performance of an operating crew of at least one aerial vehicle during at least one close-in air combat, comprising:

- at least one computer;
- an assessment information database implemented on the at least one computer;
- an assessment and guidance software application implemented on the at least one computer;
- wherein the information in said database comprises information about at least one other aerial vehicle participating in combat; and
- wherein said software is programmed to use the information in said database to provide in real time an automatic situation assessment, dynamically generate at least one indication of the assessment, and communicate the at least one indication at guidance to the operating crew of the at least one aerial vehicle, during at least one close-in air combat.

SYSTEM WITH SLIDING SASH

- a sash (10) slidingly mounted on a track motion system (20) and pivotable with respect to the track motion system;
- a guide member (30) arranged for translation in and out of said sash between a first position (32), wherein said guide member protrudes from said sash into a portion of said track motion system sufficiently to prevent substantial pivoting of said sash with respect to said track motion system, and second position (31), wherein said guide member is retracted in said sash sufficiently to permit pivoting of said sash with respect to said track motion system, wherein said guide member is adapted to seal said sash with respect to said track motion system in said first position; and
- a sealing element (34) attached to said guide member, adapted to sealingly contact said track motion system in said first position.

A system comprising:

14 SHENKAR ST.,
HERZLIYA PITUAH 46725

A system for optimizing the performance of an operating crew of at least one aerial vehicle during at least one close-in air combat, comprising:

- at least one computer;
- an assessment information database implemented on the at least one computer;
- an assessment and guidance software application implemented on the at least one computer;
- wherein the information in said database comprises information about at least one other aerial vehicle participating in combat; and
- wherein said software is programmed to use the information in said database to provide in real time an automatic situation assessment, dynamically generate at least one indication of the assessment, and communicate the at least one indication at guidance to the operating crew of the at least one aerial vehicle, during at least one close-in air combat.

A system comprising:

- a sash (10) slidingly mounted on a track motion system (20) and pivotable with respect to the track motion system;
- a guide member (30) arranged for translation in and out of said sash between a first position (32), wherein said guide member protrudes from said sash into a portion of said track motion system sufficiently to prevent substantial pivoting of said sash with respect to said track motion system, and second position (31), wherein said guide member is retracted in said sash sufficiently to permit pivoting of said sash with respect to said track motion system, wherein said guide member is adapted to seal said sash with respect to said track motion system in said first position; and
- a sealing element (34) attached to said guide member, adapted to sealingly contact said track motion system in said first position.
SUSTAINED-RELEASE PREPARATIONS OF QUINOLONE ANTIBIOTICS AND METHOD FOR PREPARATION THEREOF

[22] 13.06.2001
[51] Int. Cl.(2009.01) A61K 09/00
[71] BAYER SCHERING PHARMA AG, GERMANY

May 31, 2010
The invention relates to an orally dosable preparation containing a quinolone antibiotic, which releases the active ingredient in a sustained manner. A preferred embodiment concerns preparations comprising a mixture of a quinolone free base and the salt thereof. Particularly preferred are mixtures of ciprofloxacin hydrochloride and ciprofloxacin betaine.

Compositions useful for long-lasting pain relief from mucosal damage, such as mucosal inflammation, abrasions, ulcerations, lesions, trauma and incisions, without significant systemic absorption. The compositions of the invention are particularly suitable for application to the mucous membrane of the nasal cavity and bucal cavity. To relieve pain, the compositions or the invention are topically applied directly to the affected area.
The invention provides variolin derivatives of formula (I), wherein: R1 and R2 are each independently selected from the group consisting of H, OH, OR, SH, SR, SOR, SO2R, NO2, NH2, NHR, N(R)2, NHCOR, N(COR)2, NHSO2R, CN, halogen, C(=O)H, C(=O)R, CO2H, CO2R, C1-C12 alkyl, C1-C12 haloalkyl, C2-C12 alkenyl, C2-C12 alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl and substituted or unsubstituted heteroaromatic; and R3 is selected from the group consisting of H, OH and OMe; wherein the or each group R is independently selected from the group consisting of OH, C1-C12 alkyl, C1-C12 haloalkyl, C2-C12 alkenyl, C2-C12 alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted arylalkenyl and substituted or unsubstituted heteroaromatic, and wherein the group R1, R2 or R3 is a group of formula N(R)2 or N(COR)2, each of the R groups may be the same or different, or the two R groups, together with the nitrogen atom to which they are attached, may form a 5-14 membered heterocyclic ring. These compounds display activity against a range of mammalian cancer cell lines. New synthetic routes to new and known variolin compounds, together with novel intermediates, are also disclosed. New antitumour activity of known variolin compounds is also described.
The invention relates to a method with a wide range of applications, for identifying chemical compounds that modulate G-protein-coupled receptors by means of novel hybrid G-proteins with an extremely broad receptor specificity and an extremely high expression. The invention also relates to chemical compounds that can be identified by a method of this type.
A method for measuring in an electrically conductive film of a specific sample, the method comprising:
providing data indicative of a free space response of an RF sensing coil unit to AC voltage applied to the RF sensing coil;
locating said sensing coil proximate to the sample at a distance h substantially not exceeding $0.2r$ wherein r is the coil radius; supplying an AC voltage in a range from 100MHz to a few GHz to the sensing coil to cause generation of an eddy current passage through the conductive film;
detecting a response of said sensing coil to an effect of the electric current through the conductive field onto a magnetic field of the coil and generating measured data indicative of said response; and utilizing said data indicative of the free space measurements to analyze the measured data and to determine at least a thickness of the conductive film in said specific sample, the method providing for measuring in conductive films with a sheet resistance R, in a range from about 0.009 to about 2 Ohm/m2.

USE OF RECONSTITUTED HIGH-DENSITY LIPOPROTEIN (HDL) FOR PRODUCING A COMPOSITION FOR TREATING VASCULAR DISORDERS FOR ACUTE IMPROVEMENT OF ENDOTHELIAL FUNCTION

The invention relates to the use of reconstituted HDL for improving the endothelial function in patients suffering from hypercholesterolaemia and for treating or
preventing acute coronary diseases such as unstable angina pectoris.

154155

[54] DERIVATIVES OF VARIOLIN B AND PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME

03.08.2001

PHARMA MAR S.A., SOCIEDAD UNIPERSONAL, SPAIN

WO/2002/012240

WOLFF, BREGMAN AND GOLLER, P.O.B. 1352, JERUSALEM 91013

The invention provides antitumour compounds of formula (I), wherein R1 is an aromatic substituent; R2 is hydrogen or a substituent when the dotted line is absent, or R2 is absent when the dotted line represents a bond to give a double bond between the nitrogen which bears R2 and the carbon which bears R3; R3 is an oxo group = O when the dotted line is absent or is a substituent when the dotted line represents a bond to give a double bond between the nitrogen bearing R2 and the carbon bearing R3; R4 is hydrogen or a substituent; and pharmaceutically acceptable salts thereof.

154294

[54] MODIFIED YEASTS, METHODS, USES, IN PARTICULAR FOR PRODUCING STEROID DERIVATIVES AND ACELLULAR PREPARATION

197

May 31, 2010
The invention concerns novel yeast strains, methods and genetic constructs for preparing them, and their use for synthesising or modifying steroid compounds. More particularly, the invention concerns strains having reduced 20α-HSD activity, in particular by modification of the GCY1 and/or YPR1 genes. The inventive yeast strains enable to improve the efficacy of synthesis or to increase selectivity or yields of the process, as well as the quality of the final product. The inventive strains, methods and compounds are useful for researching, developing and producing products with therapeutic or prophylactic activity, in a human or an animal, in particular steroid derivatives.
Antisense Insulin-like Growth Factor Binding Protein (IGFBP)-2 Oligodeoxynucleotides For Prostate and Other Endocrine Tumor Therapy

Compositions and a method are provided for the treatment of prostate and other endocrine tumors in mammals, including humans, by administration of an antisense oligodeoxynucleotide (ODN) which is complementary to a portion of the gene encoding IGFBP-2. Using the human prostate cancer LNCaP tumor model in vitro and in vivo, the administration of such an ODN was shown to reduce proliferation of tumor cells, and also to delay the progression to androgen independence. Thus, treatment of prostate and other hormone-regulated cancer in mammals, including humans, and delay of the progression of prostate tumors to androgen independence is accomplished by administering to the mammal a therapeutically effective amount of an antisense oligodeoxynucleotide which is complementary to a portion of the nucleic acid sequence encoding IGFBP-2 and which reduces the amount of IGFBP-2 in the treated

13.09.2001

14.09.2000

US

Int. Cl.(2009.01) A61K 48/00, A61P 35/00, 35/04, C12N 15/11

THE UNIVERSITY OF BRITISH COLUMBIA, CANADA

WO/2002/022642

DR. SHLOMO COHEN & CO.,
124 IBN GABIROL ST.,
P.O.B. 11490,
TEL AVIV 62038

124

Tel Aviv

11490

62038

Compositions and a method are provided for the treatment of prostate and other endocrine tumors in mammals, including humans, by administration of an antisense oligodeoxynucleotide (ODN) which is complementary to a portion of the gene encoding IGFBP-2. Using the human prostate cancer LNCaP tumor model in vitro and in vivo, the administration of such an ODN was shown to reduce proliferation of tumor cells, and also to delay the progression to androgen independence. Thus, treatment of prostate and other hormone-regulated cancer in mammals, including humans, and delay of the progression of prostate tumors to androgen independence is accomplished by administering to the mammal a therapeutically effective amount of an antisense oligodeoxynucleotide which is complementary to a portion of the nucleic acid sequence encoding IGFBP-2 and which reduces the amount of IGFBP-2 in the treated mammal.

13.09.2001
In one embodiment, the present invention is directed to a first oligonucleotide comprising the sequence of or derived from 5’-CTAGGGCGGGCGGGACTCACCTAC-3’ or the nucleic acid sequence complementary thereto. The first oligonucleotide can be used with a nucleic acid of between 15 and 30 nucleotides that does not comprise the sequence of the first oligonucleotide and is found in the region from V(beta) to J(beta) of the Vbeta13.1 gene in Vbeta 13.1 T cells, wherein the sequences of the oligonucleotide and the nucleic acid are not found on the same strand of the V(beta)13.1 gene pair, to amplify a portion of the V(beta)13.1 gene. Alternatively, the first oligonucleotide can be used with a labeling moiety in methods of detecting a LGRAGLTY motif found in T cell receptors of V(beta)13.1 T cells. This motif is associated with autoimmune diseases, such as multiple sclerosis (MS). Once the motif is detected, the autoimmune disease can be treated or its progress monitored. The autoimmune disease can be treated by administering one or more peptides comprising the LGRAGLTY motif.
MULTIPLE NONVOLATILE MEMORIES

One or more embodiments of the invention provide a method, apparatus, and article of manufacture for controlling unauthorized access to digital services comprising: Access control to digital services is distributed among a plurality of physically separate and independently controlled nonvolatile memory components on a system bus. The plurality of nonvolatile memory components are communicatively coupled to a microprocessor. The microprocessor is configured to use state information in the nonvolatile memory components to provide desired functionality and enforce one or more security policies for accessing the digital services.

DEDICATED NONVOLATILE MEMORY

[11][21] 154658

[54] DEDICATED NONVOLATILE MEMORY

[22] 27.02.2003
[51] Int. Cl.(2009.01) G06F 12/14, G11C 07/00
[71] HUGHES ELECTRONICS CORPORATION, U.S.A.
[74] SANFORD T.COLB & CO.,
P.O.B. 2273,
REHOVOT 76122

One or more embodiments of the invention provide a method, apparatus, and article of manufacture for controlling unauthorized access to digital services comprising: Access control to digital services is distributed among a plurality of physically separate and independently controlled nonvolatile memory components on a system bus. The plurality of nonvolatile memory components are communicatively coupled to a microprocessor. The microprocessor is configured to use state information in the nonvolatile memory components to provide desired functionality and enforce one or more security policies for accessing the digital services.

[11][21] 154657

[54] MULTIPLE NONVOLATILE MEMORIES

[22] 27.02.2003
[51] Int. Cl.(2009.01) G06F 12/14, G11C 07/08
[71] HUGHES ELECTRONICS CORPORATION, U.S.A.
[74] SANFORD T.COLB & CO.,
P.O.B. 2273,
REHOVOT 76122

One or more embodiments of the invention provide a method, apparatus, and article of manufacture for controlling unauthorized access to digital services comprising: Access control to digital services is distributed among a plurality of physically separate and independently controlled nonvolatile memory components on a system bus. The plurality of nonvolatile memory components are communicatively coupled to a microprocessor. The microprocessor is configured to use state information in the nonvolatile memory components to provide desired functionality and enforce one or more security policies for accessing the digital services.

[11][21] 154657
One or more embodiments of the invention provide a method, apparatus, and article of manufacture for limiting unauthorized access to digital services comprising. A protected nonvolatile memory component (614) is configured. The protected nonvolatile memory component (614) is used to contain state information to provide desired functionality and enforce one or more security policies for accessing the digital services.

Additionally, the protected nonvolatile memory component (614) and a microprocessor's (602) nonvolatile memory component (606) share a programming charge pump and programming control. Once configured, access to the nonvolatile memory component (614) is controlled through a fixed state custom logic block (612).
The present invention provides an attenuated virus, which is derived from Modified Vaccinia Ankara virus and which is characterized by the loss of its capability to reproductively replicate in human cell lines. It further describes recombinant viruses derived from this virus and the use of the virus or its recombinants as medicament or vaccine. Additionally, a method for inducing an immune response even in immuno-compromised patients, patients with pre-existing immunity to the vaccine virus or patients undergoing antiviral therapies is provided.
A retrofittable apparatus adapted for converting a substantially planar surface into a writing surface for an electronic data capture device, comprising:
a sensor array including at least two sensors that a fixedly mounted within a single housing to establish a fixed relationship between two or more sensors, said sensor array providing a tracking function to determine the position of a marking implement on said writing surface;
a temporary attachment for removably affixing said sensor array proximate to said substantially planar surface; and
an eraser comprising a handle, an erasing edge, and at least two transmitters, in which one transmitter is attached to a first end of said erasing edge and a second transmitter is attached to a second end of said erasing edge,
wherein said eraser is operable to erase a thin portion of the writing surface by moving the eraser in a motion that is parallel to the axis of the eraser, said eraser is operable to erase a wide portion of said marking surface by moving said eraser perpendicular to the axis of the eraser edge, and said eraser may be operable to erase a swath having a width between said wide and narrow swaths by moving said eraser edge diagonally.

[57]

R. Cohn and Partners
26A Habarzel St.
Ramat Hachayal 69710

[54] FITTING

May 31, 2010
The invention relates to fittings (1, 21) for the fixing and/or locking arrangement of a glass element (45) on at least one adjacent glass element, whereby the fittings (1, 21) are composed of fitting halves (2, 3, 22, 23, 26, 27) each consisting of a substructure (42) fixed to the glass element (45) and of a covering (25) that crowns the substructure (42). The aim of the invention is to create a fitting (1, 21), which forms a compact and visually appealing unit having a smallest possible overall height, whereby retaining the existing diversity of use and the various functions. To this end, the covering (25) comprises a front surface (7, 30), which is fixed between lateral faces (5, 6, 28, 29) and which curves in a convex manner from one edge (8, 31) to the opposite edge (9, 32).
The present invention relates to novel primers useful for identifying and screening non-sense mutation with codon TGG coding for amino acid tryptophan substituted with TAG a non-sense codon at nucleotide No. 825 in exon 2 of synaptogyrin 1 gene of chromosome 22q11-13, thereby detecting pre-disposition to schizophrenia in a subset of patients and a method thereof.

Devices and methods for supporting guardrail terminal installations that incorporate safety end treatments such as the GET and the SRT. Preferred embodiments are described wherein guardrail terminal installations are primarily anchored to the ground using weak support posts that are preferably made of metal. The ends of the guardrail installation are secured to the ground using breakaway posts. In operation, the weak posts permit the central portion of the guardrail installation to contain and redirect the vehicle during a lateral collision to the rail member. The anchorage provided by the breakaway end posts helps prevent the guardrail from being excessively displaced, thus preventing the impacting vehicle from breaking through the guardrail. In operation, guardrail terminal assemblies constructed in accordance with the present invention provide an improved support system for the rail member which is more forgiving than conventional strong post anchorages, thereby providing an improvement.
in safety.

[54] KAHALALIDE F FORMULATION

[22] 31.10.2001
60/246229 06.11.2000 US
60/348449 19.10.2001 US

[51] Int. Cl.(2009.01) A61K 09/19, 38/15, 47/12, 47/26, A61P 35/00, C07K 11/02

[71] PHARMA MAR, S.A., SPAIN

[74] SANFORD T.COLB & CO.,
P.O.B. 2273,
REHOVOT 76122

[57] New formulations and new uses of kahalalide F are provided.

[54] INTEGRATED CIRCUIT CARRIER WITH RECESSES

[22] 19.10.2001

[87] WO2002/036145

[57] May 31, 2010

[11][21] 155297

[11][21] 155466
An integrated circuit carrier (10) includes a wafer having a receiving zone (12). The receiving zone (12) is demarcated by a bore (60) in the wafer. A plurality of island-defining portions (16) is arranged about the receiving zone (12). Each island-defining portion (16) has an electrical terminal electrically connected to an electrical contact of said at least one receiving zone (12). A rigidity-reducing arrangement (40) connects each island-defining portion (16) to each of its neighbouring island-defining portions (16).

[57] An apparatus for printing out recovered image data from a photograph is disclosed. The data is recorded in infrared ink on top of the image itself in an encoded fault tolerant digital form enabling the image to be recovered notwithstanding damage to the photograph surface. The apparatus can print out the image after processing the data.
the data is stored then the image can be printed as many times as required. Alternatively, the photograph can be repeatedly passed through the scanner or reader the required number of times. In another form of the invention, the apparatus can also print out the image with the image data again recorded in infrared ink using a printer which has the necessary number of ink jet nozzles to do so and the apparatus has the necessary processing capacity to process, compress, scramble and encode the data.

MONOCLONAL ANTIBODIES AND CELL SURFACE ANTIGENS, COMPOSITIONS COMPRISING THEM AND USES THEREOF FOR PREPARING A MEDICAMENT FOR THE TREATMENT OF SMALL CELL LUNG CANCER (SCLC)

The invention provides new monoclonal antibodies and binding fragments thereof which recognize and immunoreact with cell surface antigens found on small cell lung

May 31, 2010
cancer (SCLC) cells. The antibodies have tumor specificity and are useful for therapy, diagnosis, monitoring, detecting and imaging of SCLC disease and of patients having SCLC disease. The antibody-recognized SCLC-specific surface antigens can serve as targets for detecting, diagnosing, inhibiting or killing SCLC cells.

[11][21] 155612

[54] PROCESS FOR PREPARATION OF WATER SOLUBLE AZOLE COMPOUNDS

[22] 18.10.2001
[51] Int. Cl.(2009.01) C07F 09/00, 09/6518, 09/6558
[71] EISAI R&D MANAGEMENT CO., LTD., JAPAN
[87] WO/2002/042283
[74] REINHOLD COHN AND PARTNERS, 26A HABARZEL ST., RAMAT HACHAYAL 69710

An improved process is provided for preparing water-soluble prodrugs of triazole antifungal compounds containing a secondary or tertiary hydroxyl group. More particularly, the improved process is directed toward preparation of water-soluble triazole antifungal compounds having the general formula (I) wherein A is the non-hydroxy portion of a triazole antifungal compound of the type containing a secondary or tertiary hydroxyl group and R and R?1¿ are as defined in the specification.

[57]

210 May 31, 2010
PIPERAZINYL PYRAZINE COMPOUNDS, PHARMACEUTICAL COMPOSITIONS COMPRISING THEM AND USE THEREOF IN THE PREPARATION OF MEDICAMENTS FOR THE TREATMENT OF SEROTONIN RELATED MEDICAL CONDITIONS

A compound of the general formula (I), wherein R1, R2, X, Y and Z are as described in the specification.

METHOD AND APPARATUS FOR PROVIDING HIGH SPEED DATA COMMUNICATIONS IN A CELLULAR ENVIRONMENT

A system and method for provisioning a fast cellular network.
A method for a communication system comprising:
receiving a signal, carrying digital data, at a mobile station of a plurality of mobile stations, from a base station, in non-overlapping transmission bursts at a fixed predetermined power level, at a selected encoding rate, for a selected amount of data and with a selected modulation format, wherein said non-overlapping transmission bursts are over predefined and fixed duration time frames;
decoding said received signal to retrieve said digital data based on said selected encoding rate, said selected amount of data and said selected modulation format, wherein at least one of said selected encoding rate, said selected modulation format and said selected amount of data for said receiving at said mobile station of said plurality of mobile stations from said base station is based on an effective link budget for each of said plurality of mobile stations, wherein said link budget includes a parameter indicating transmission set at said fixed and predetermined power level.
APPARATUS FOR INTERACTION WITH A NETWORK COMPUTER SYSTEM
The present invention relates to an apparatus enabling interaction with a network computer system. It has particular application to a system employing a printer for printing an interface onto a surface to produce an interface surface. According to one aspect of the invention, there is provided an apparatus enabling interaction with a network computer system, the apparatus including: an appliance for storing and cooling produce for use by an appliance user; and a printer device integrated into said appliance, the printer device being operatively interconnectable with said network computer system, the printer device including a printer module operable to print at least one form delivered from said network computer system, and the printer device being configured to receive indicating data from a sensing device operated by an appliance user, the sensing device when placed in an operative position relative to said at least one form sensing the indicating data. By means of the invention, a network terminal comprising an interactive printer device can be incorporated into, say, the door of a domestic refrigerator. Such an appliance is readily accessible, and is regularly visited by those who may be making use of the network terminal.
The invention relates to novel delta 1-pyrrolines of formula (I), in which R1, R2, R3, m and Q have the meanings as cited in the description, to a number of methods for producing these substances, and to their use for controlling pests.
An ambulatory infusion pump for expelling fluid from a fluid reservoir bag 18, comprising:

- a generally rectangular housing defining a central axis, said housing having an interior space therein;
- a first wall within said interior space and defining a first surface for contacting said fluid reservoir bag;
- a second wall within said interior space and defining a second surface for contacting said fluid reservoir bag 18, said second surface facing said first surface, said second surface...
wall being moveable between a first position and a second position relative to said first wall, said second position being closer than said first position; and characterized in that an elongated first guide rod and an elongated second guide rod are spaced from said central axis on opposing sides thereof, said first and second guide rods being oriented generally parallel to said central axis; a first moveable stop and a second moveable stop 23, each of said first and second moveable stops being slidably engaged with each of said first and second guide rods; at least one parallelogram linkage assembly having first and second opposing pivots 28 connected to said housing and said second wall, respectively, and third and fourth opposing pivots connected to said first and second moveable stops, respectively; and at least one spring 14 configured to apply a force tending to bias said first and second stops toward one another, thereby moving said third and fourth pivots toward one another and moving said second wall toward said second position.

[11][21] 156214

[54] GUANIDINE AND AMIDINE DERIVATIVES AS FACTOR XA INHIBITORS

[22] 28.11.2001
[51] Int. Cl.(2009.01) A61K 31/4245, 31/445, A61P 07/02, C07C 257/18, C07D 211/26, 211/34, 271/07, 401/04, 413/04
[71] SANOFI-AVENTIS DEUTSCHLAND GmbH, Germany
[87] WO/2002/046159
[74] PEARL COHEN ZEDEK LATZER,
5 SHENKAR ST.,
P.O.B. 12704,
HERZLIYA 46733

The present invention relates to compounds of the formula (I), in which R0, Q, X, Q’, D, R10 and V have the meanings indicated in the claims. The compounds of the formula I are valuable pharmacologically active compounds. They exhibit a strong antithrombotic effect and are suitable, for example, for the therapy and prophylaxis of cardiovascular disorders like thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzymes factor Xa(Fxa) and/or factor VIIa(FVIIa), and can in general be applied in conditions in which an undesired activity of factor Xa and/or factor VIIa is present or for the cure or prevention of which an inhibition of factor Xa and/or factor VIIa is intended. The invention furthermore relates to processes for the preparation of compounds of the formula (I), their use, in

May 31, 2010
particular as active ingredients in pharmaceuticals, and pharmaceutical preparations comprising them.

[11][21] 156282

[54] EG-VEGF/PROKINETICIN 2-RECEPTOR ANTAGONISTS

A composition that contains, as active agent (A), an endocrine gland vascular endothelial growth factor (EG-VEGF) nucleic acid, polypeptide or antisense nucleic acid, antibody against EG-VEGF or its receptor (EG-VEGF-R), or EG-VEGF-R antisense nucleic acid, is useful for the treatment or prevention of endometrial diseases. Independent claims are also included for the following: (1) method for detecting uterine receptivity by determining the amount of EG-VEGF polypeptide and/or nucleic acid, using the new composition; or (2) test system for identifying antagonists (B) of EG-VEGF-R.

[11][21] 156853

[54] THERMAL ENERGY STORAGE

A method for storing thermal energy, which includes a heat storage unit, a heat exchanger, and a control system, is described. The heat storage unit comprises a heat storage material and a heat transfer medium. The heat exchanger is configured to transfer heat between the heat storage material and the heat transfer medium. The control system is configured to regulate the flow of heat between the heat storage material and the heat transfer medium.
In a self-regulating thermal energy storage system employing a thermal energy carrier fluid, for use in conjunction with a thermal energy client, said self-regulating thermal energy storage system comprising:

(a) a thermal energy reservoir for accumulating thermal energy carrier fluid whose temperature has been changed by a predetermined value, said reservoir containing a thermal energy storage medium which is susceptible to thermal layering, and having a lower portion and an upper portion, and arranged such that the temperature therewithin is lower within said lower portion and highest within said upper portion;

(b) a thermal energy source for imparting to the thermal energy carrier fluid a predetermined temperature change; and

(c) a fluid conduit system for permitting circulation of the thermal carrier fluid in thermal exchange communication with said thermal energy unit and into and out of said thermal energy storage reservoir so as to maintain the thermal layering within the thermal energy storage medium within the reservoir, operable to selectively supply heat to said upper portion of said reservoir, thereby to cause a release of cold from the relatively cold layers of said storage medium in said lower portion thereof; and further operable to selectively supply cold to said lower portion of said reservoir thereby to cause a release of heat from the relatively warm layers of said storage medium in said upper portion thereof, in accordance with the momentary energy requirements of the thermal energy client and the momentary generation capability of said generation source;

the improvement comprising at least one solar energy collector adapted for conversion of solar energy.
The present invention relates to the field of in vivo diagnostics. More specifically, the present invention relates to a system and a method for the in vivo and in-situ detection of chemical and/or biological substances and for the in vivo detection of physical conditions in body lumens. Figure 1 shows interaction chambers (22), formed by a slab of glass (23), or between two pieces of glass (23A and 23B). A light source (24) is used to illuminate the interaction chambers, and an optical detector (26) detects changes within the interaction chambers. A reflector (25) may be utilized to re-direct light rays (27') from the light source (24) along an alternate path (27).

ANTIBODIES THAT BIND TO A UBQUITINATION REGION OF TSG101

The present invention provides methods and compositions for regulating ubiquitination in a cell. In particular, the present invention provides purified polypeptides comprising an ubiquitination-regulating domain. The invention also provides methods of using
such polypeptides for screening for agents, for producing antibodies, and for treatment of diseases, e.g., proliferative diseases, neurodegenerative diseases, autoimmune diseases, metabolic disease and developmental abnormalities. The invention further provides antibodies that bind an ubiquitination-regulating domain and agents and antibodies that regulate ubiquitination in cells, e.g., by modulating the interaction between a TSG101 protein and an MDM2 protein.

![Diagram of protein interaction]

[11][21] 156984

[54] TOP DISCHARGE OF PUMPABLE MATERIAL FROM SHIPPER BAGS

[22] 15.01.2002
[51] Int. Cl.(2009.01) B65D 35/28, 88/62
[71] A.R. ARENA PRODUCTS, INC., U.S.A.
[87] WO/2002/057151
[74] WOLFF, BREGMAN AND GOLLER, P.O.B. 1352, JERUSALEM 91013

[57] A disposable bag (10) for a liquid shipping container (15) has a multi ply region arranged to be inflated as the bag empties in such a way as to form a sump at the bag bottom (14) for discharge of pumpable material from the sump. The discharge from the sump preferably extends upward and over a top of the bag and a top of the container.
MONOCLONAL ANTIBODIES TO THE CLFA PROTEIN AND METHOD OF USE IN TREATING AND PREVENTING INFECTIONS

28.01.2002

2001

INHIBITEX, INC., U.S.A.

MONOCLONAL ANTIBODIES TO THE CLFA PROTEIN AND METHOD OF USE IN TREATING AND PREVENTING INFECTIONS

Monoclonal antibodies which can bind to the ClfA protein and which are generated from binding subdomains or active fragments of the ClfA protein from Staphylococcus aureus, including the active fragments proteins from its fibrinogen binding domain such as Clf40 protein, the Clf33 protein, or ClfA N3, are provided which can be useful in the treatment and protection against infection from staphylococcal bacteria such as Staphylococcus aureus. In addition, medical instruments can be treated using the monoclonal antibodies of the invention in order to reduce or eliminate the possibility of their becoming infected or further spreading the infection. In particular, the antibodies of the present invention are advantageous because they can prevent adherence of the bacteria to host cells by impairing or inhibiting the ability of S. aureus ClfA to bind to fibrinogen or fibrin, and thus can be utilized in methods or treating or
preventing staphylococcal inventions.

[54] MICROELECTRONIC SYSTEM
WITH INTEGRAL CRYOCOOLER
AND ITS FABRICATION AND USE

[22] 29.08.2002
[51] Int. Cl.(2009.01) F17C 13/00, F25B 09/00, 09/02, H01J 07/24, H01L 23/44
[71] RAYTHEON COMPANY, U.S.A.
[87] WO/2003/025476
[74] SANFORD T.COLB & CO.,
P.O.B. 2273,
REHOVOT 76122

A microelectronic system (20) includes a substrate (22) that is preferably silicon and a microelectronic device (24) supported on the substrate (22). The microelectronic device (24) may be a light sensor that include a readout integrated circuit formed in the silicon substrate (22), and a light detector (28) supported on and electrically interconnected with the readout integrated circuit (26). A cryocooler (30) formed in and integral with the substrate (22) includes a gas inflow channel (36) formed in the substrate (22), an expansion nozzle (42) formed in the substrate (22) and receiving a gas flow from the gas inflow channel (36), and a gas outflow channel (48) that receives the gas flow from the outlet of the expansion nozzle (42). The gas inflow channel (36) and the gas outflow channel (48) may be countercurrent spirals.
A method of separating a sheet of print media from a stack (28) of sheets, the sheets being porous, includes blowing fluid on to a top surface of a topmost sheet (28.1) of the print media on the stack (28) so that the fluid passes through at least the topmost sheet (28.1) of the stack (28) and capturing at least a part of the topmost sheet for conveyance to a printing station (13) of a printer (10).
The invention concerns a method for making yarns, fibres and filaments based on polyamide, and yarns, fibres and filaments obtainable by said method. The invention concerns a method for making yarns, fibres and filaments based on a polyamide composition having a molecular structure for enhancing overall productivity of the spinning process, in particular by improving the capacity for drawing the yarns produced thereby providing, for example, for a single identical spinning speed a much higher yarn meterage produced per time unit after drawing. The invention consists in a method for making synthetic yarns, fibres and filaments based on polyamide, comprising the following steps: i) mixing in molten phase the following compounds A and B: compound A: a linear polyamide; compound B selected in the group comprising: star-shaped or H-shaped macromolecular chains including one or several cores and at least three polyamide branches or three polyamide segments bound to said core, obtained from amino acid monomers and/or lactams, and as the case may be linear polyamide macromolecular chains obtained from amino acid monomers and/or lactams the melt index in molten phase of the polyamide or of the polyamide composition measured in accordance with the ISO 1133 standard at 275 °C under 100 g load being higher than 20 g/10 min, and a multifunctional compound comprising at least three identical acid or amine functions; ii) spinning the mixture in molten phase; iii) and optionally drawing said resulting yarns, fibres or filaments.
Pre-treatment with α, β unsaturated aryl sulfones protects normal cells from the toxic side effects of ionizing radiation. Administration of a radioprotective α, β unsaturated aryl sulfone compound to a patient prior to anticancer radiotherapy reduces the cytotoxic side effects of the radiation on normal cells. The radioprotective effect of the α, β unsaturated aryl sulfone allows the clinician to safely increase the dosage of anticancer radiation. In some instances, amelioration of toxicity following inadvertent radiation exposure may be mitigated with administration of α, β unsaturated arylsulfone.
Synthetic peptides of at least 12 and at most 30 amino acid residues comprising a sequence consisting of, or found within, a complementarity-determining region (CDR) found in the heavy or light chain of the human anti-DNA 16/6Id monoclonal antibody, or a sequence obtained by replacement and/or deletion and/or addition of one or more amino residues to said sequence, and salts, chemical derivatives and polymers of said peptides can be used for immunomodulation of systemic lupus erythematosus-associated responses.

This invention concerns antimicrobial compositions that are useful for industrial applications. More specifically, it concerns antimicrobial compositions, that by
combining 3-benzo[b]thiophene-2-yl-5,6-dihydro-1,4,2-oxathiazine-4-oxide and one or more of 1-[(3-iodo-2-propynyl)oxy]methoxy]-4-methoxy benzene, 1-chloro-4-[(3-iodo-2-propynyl)oxy]methoxy benzene, Zinc 2-pyridine thiol-1-oxide, Copper 2-pyridine thiol-1-oxide, 2-pyridine thiol-1-oxide sodium salt, 2,2-dithio-bis(pyridine-1-oxide), 2-methylthio-4-t-butyl amino-6-cyclopropyl amino-s-triazine, 3-iodo-2-propynyl butylcarbamate (IPBC), 2-(n-octyl)-3(2H)-isothiazolone (OIT), 4,5-dichloro-2-(n-octyl)-3(2H)-isothiazolone (DCOIT), 2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile (chlorothalonil), 1,1-dichloro-N-[(dimethylamino)sulfonfyl]-1-fluoro-N-phenyl-methanesulfonyamide (dichlofluanid), or 1,1-dichloro-N-[(dimethylamino)sulfonfyl]-1-fluoro-N-(4-methylphenyl)-methanesulfonyamide (tolylfluanid) have the synergistic effect of these compounds.

The invention relates to novel active substances (caloporoside derivatives), which are formed by the microorganism Gloeoporus dichrous (Fr.:Fr.) Bres. ST001714, DSM 13784 during fermentation. The invention also relates to methods for producing said active substances, to their use as medicaments, to medicaments containing caloporoside derivatives, and to the microorganism Gloeoporus dichrous (Fr.:Fr.) Bres. ST001714, DSM 13784 itself.
METHOD AND SYSTEM FOR DETECTION OF OBJECTS

A method for detection of an object, the method comprising:
irradiating a target with two electromagnetic wave energy beams, a first beam at a first frequency and a second beam at a second frequency, the first frequency being lower than the second frequency, both beams being polarized in a first direction; and
determining a presence of an object by analyzing reflections of said first and second beams, by comparing the reflections with reflections obtained from a control volume known to have the object therein, wherein the target is considered to have the object if the polarization characteristics of the reflections of the first and second frequencies match the reflections obtained from the control volume within a predefined tolerance.

RECONSTITUTABLE PARENTERAL COMPOSITION CONTAINING A COX-2 INHIBITOR

A reconstitutable parenteral composition for COX-2 inhibitors.

158097
A pharmaceutical composition comprises, in powder form, (a) at least one water-soluble therapeutic agent selected from selective COX-2 inhibitory drugs and prodrugs and salts thereof, for example parecoxib sodium, in a therapeutically effective total amount constituting about 30% to about 90% by weight, (b) a parenterally acceptable buffering agent in an amount of about 5% to about 60% by weight, and optionally (c) other parenterally acceptable excipient ingredients in a total amount not greater than about 10% by weight, of the composition. The composition is reconstitutable in a parenterally acceptable solvent liquid to form an injectable solution. A lyophilization process is provided for preparation of such a composition.

The invention relates to the field of immunology and specifically to immunotherapeutic combinations that are used to impede the growth of tumour cells and/or to eliminate said cells. The present invention can be used to observe a

May 31, 2010
therapeutic antitumour effect by combining idiotypic vaccines having an
antiganglioside antibody (Ab1) as the active principle thereof with idiotypic vaccines,
the active principle of which is an anti-idiotype antibody obtained against an
antiganglioside antibody (Ab2), or with vaccines, the active principle of which is one
or more gangliosides. The invention relates to combinations of said vaccines which
produce a synergism of the antitumour effect which is induced separately by each of
the vaccines. Said combinations can be applied to patients in different clinical states
with tumours that overexpress gangliosides.

158427

SYSTEM AND METHOD FOR
TRANSMITTING HEAT INTO A
HYDROCARBON FORMATION
SURROUNDING A HEAT
INJECTION WELL

A method and system for transmitting heat substantially by conduction into a
hydrocarbon containing formation surrounding a heat injection well utilise oxidant
supply and combustion gases exhaust conduits disposed in the wellbore of the heat
injection well, wherein an oxidant, such as air, is injected through the oxidant supply
conduit to a reaction zone in the formation in the vicinity of the heat injection well
whereat least a portion of the hydrocarbons in the formation are oxidized such that
heat and combustion gases are generated, and at least a portion of the combustion gases
are transmitted through the combustion gases exhaust conduit away from the reaction
zone such that migration of combustion gases from the reaction zone into the
hydrocarbon containing formation is inhibited.

231
A rotating cultivation system for holding a plurality of cultivation beds enabling a rotation of said beds, said system comprising:

- at least one central rotating mechanism and at least one external rotating wheel;
- a plurality of secondary wheel assemblies connected to the external rotating wheel that allows rotation of said assemblies around the external rotating wheel's axis, wherein each assembly holds at least one cultivation bed and
- at least one stand, supporting each external wheel, where said stand comprises bearings, where said external wheel is mounted upon said bearings that allow the external wheel to rotate, wherein the rotation of the external rotating wheel causes the whole apparatus to rotate around the central axis of said wheel; and
- wherein each assembly is connected to said at least one central rotating mechanism by at least one frame enabling each assembly to rotate around its own axis, wherein the rotation of said assemblies around the external wheel's axis is independent of said assemblies' rotation around their own axes; and
- wherein the rotation direction of each secondary wheel assembly is opposite to the rotation direction of an adjacent secondary wheel assembly; and
- wherein the rotation direction of each secondary wheel assembly is opposite to the rotation direction of an adjacent secondary wheel assembly.
A multiple well plate and method for media exchange, including a body defining a plurality of cell wells each connected via a channel to one of a plurality of aspiration holes, is provided. The cell wells contain a porous, hydrophilic frit which is suspended on a ledge above a reservoir of fluid media and supports a tissue sample. The properties of the frit wick the fluid media upwards to supply the tissue sample with nutrients for growth and proliferation. Old media is aspirated from the wells by a liquid handling device which inserts a pipette tip into the aspiration holes. The pipette tip applies a suction pressure which draws the media out of the cell well, through the channel, into the aspiration hole and out through the pipette tip. New media is dispersed through the pipette tip and directly into the cell well.
CRYSTALLINE COMPOSITION CONTAINING ESCITALOPRAM

Crystalline particles of escitalopram oxalate with a particle size of at least 40µm is disclosed. Method for the manufacture of said crystalline particles and pharmaceutical compositions comprising said crystalline particles are also disclosed.

METHOD AND APPARATUS FOR STORING AND MANAGING CONTACTS IN A DISTRIBUTED COLLABORATION SYSTEM

Proper user-to-data associations are maintained in shared spaces created in a peer-to-peer collaborative system by means of a simplified and minimal user interface that permits users to easily authenticate other members of a shared space. In particular, support is provided for automatically building authenticated relationships even if users...
do not take the time to authenticate other users. When a user enters a shared space and views the contacts in that space, the display names of each contact are accompanied by distinctive icons that identify that authentication status of that contact. A mechanism is provided for resolving conflicts between contacts with the same display names to prevent confusion and contact "spoofing". Security policies can be established to provide a uniform approach to authentication. These policies can be set by a user or, alternatively, the policies can be set by an administrator.

VECTOR ENCODING HUMAN GLOBIN GENE AND USE THEREOF IN TREATMENT OF HEMOGLOBINOPATHIES

[54] VECTOR ENCODING HUMAN GLOBIN GENE AND USE THEREOF IN TREATMENT OF HEMOGLOBINOPATHIES

[22] 01.07.2002
60/302852 02.07.2001 US
[51] Int.Cl.(2009.01) A61K 31/519, 35/76, 48/00, A61P 07/06, C07K 14/805, C12N 15/867
[71] SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, U.S.A.
[87] WO/2003/002155
[74] DR. SHLOMO COHEN & CO., 124 IBN GABIROL ST.,
P.O.B. 11490, TEL AVIV 62038

Recombinant lentiviral vectors having a region encoding a functional globin gene; and large portions of the beta-globin locus control regions which include DNase I hypersensitive sites HS2, HS3 and HS4 provides expression of beta-globin when introduced into a mammal, for example a human, in vivo. Optionally, the vector further includes a region encoding a dihydrofolate reductase. The vector may be used in treatment of hemoglobinopathies, including beta-thalessemia and sickle-cell disease. For example, hematopoietic progenitor or stem cells may be transformed ex vivo and then restored to the patient. Selection processes may be used to increase the percentage of transformed cells in the returned population. For example, a selection marker which makes transformed cells more drug resistant than un-transformed cells allows selection by treatment of the cells with the corresponding drug.
An administration device for dosed administration of a distributable product, said device comprising: a) a front housing section (1, 3) having a reservoir (2) for the product, b) a rear housing section (11), c) an output member (4) which is borne by at least one (1, 3) of the housing sections (1, 3, 11) for performing a distributing movement enabling a selected product dose to be distributed, d) a dose adjustment member (9; 39) performing a dosing movement for a selection of the product dose in relation to the output member (4), e) and a dosing and drive mechanism (12; 32) which can be displaced in a rotational and translatory manner about an axis of rotation (L) in relation to the front housing section (1, 3) and which can be coupled during connection of the housing sections (1, 3, 11) to the output member (4) and dosing adjustment member (9, 39) in such a way that a rotational movement of the dosing and drive device (12; 32) results in a dosing movement of the dose adjustment member (9; 39) and a translatory movement of the dosing and drive device (12; 32) results in a distributing movement of the output member (4).
The invention relates to an administration appliance comprising g) a front housing section (1, 3) containing a reservoir (2) for a diffusable product and a first locking element (3a); h) a piston which can be displaced in the reservoir (2) in an advance direction towards a reservoir outlet in order to diffuse the product; i) a piston rod (4); j) a rear housing section (11) which is detachably connected to the front housing section (1, 3) and has a second locking element (21) which is engaged with the first locking element (3a) in a locking manner; k) a drive element (12; 32) which is positioned on the rear housing section (11) in such a way that it can be moved in and against the advance direction, said drive element acting on the piston rod (4) in the advance direction during a diffusion movement in order to move the piston in the advance direction; and l) a locking device (25) for the locking elements (3a, 21) which is coupled to the drive element (12; 32) in such a way that the locking engagement can only be released in a release position of the drive element (12; 32).
The present invention is drawn to an isolated recombinant polynucleic acid comprising a nucleotide sequence, SEQ.ID.NO: 4 encoding 250kD protein comprising the amino acid sequence as represented by SEQ.ID.NO 6 from Eimeria maxima sporozoites/merozoites. This invention is further drawn to avian coccidiosis vaccine compositions against E.tenella, E.maxima, E.acervulina, E.necatrix, E.mitis, and E.brunetti etc.
The invention relates to a composition of Bacillus-type non-pathogenic bacterial spores which are adsorbed on a matrix formed by at least one water-insoluble adsorbent compound and a cellulose derivative. The inventive composition can be obtained using the air-fluidised bed technique and said composition is suitable for use in the pharmaceutical, veterinary and nutritional fields.

The present invention provides assays and kits for the screening of test compounds for their capability to induce cardiotoxicity in a subject. Said assays and kits are based on the finding that the interaction of astemizole with the HERG potassium channel can be exploited to predict cardiotoxicity of compounds during the development of new therapeutics and other agents.
A facility for crowd screening and protection configured for monitoring a plurality of individuals walking through the facility, and for detecting prohibited articles and substances carried by an individual of the plurality of individuals, comprising:

- A laterally-fenced walkway (FW) having an FW entrance open at a first upstream end, and an FW exit open at a second downstream end of the fenced walkway, compelling individuals to walk in single line queue over the fenced walkway, a confinement structure (CS) having a CS interior separated from a CS exterior by a peripheral wall accommodating an open CS entrance opening adjacent the FW exit, and an open CS exit open, the facility being configured for permitting passage of individuals, solely from the FW entrance to the CS exit opening, via the FW exit and the CS entrance opening,

- At least one one-way passage control device, disposed in the CS interior, operable in a first passage mode for permitting free-passage of an individual, and in a second releasable locked mode for releasably confining a single individual at a time to the CS interior,

- A monitoring unit (MU) configured for management, control, and operation of the facility, including:
 - At least one sensor operative which monitors each individual passing through the facility, to detect prohibited articles,
 - A processing device which derives results in real time from the monitoring of individuals performed by the at least one sensor, and
 - A controller which controls operation of the at least one passage control device, whereby the at least one passage control device is releasably locked by command when prohibited articles and substances carried by an individual are detected by the monitoring unit.

CROWD SCREENING AND PROTECTION (CSP) FACILITY AND METHOD SUCH AS A ROTARY DOOR

20.01.2004

Int. Cl.(2009.01) F41H 13/00

RAFAEL ADVANCED DEFENSE SYSTEMS LTD.

GLUCKSMAN - LOWY,
10A ELHANAN ST.,
P.O.B. 6202,
HAIFA 31061

A facility for crowd screening and protection configured for monitoring a plurality of individuals walking through the facility, and for detecting prohibited articles and substances carried by an individual of the plurality of individuals, comprising:

- A laterally-fenced walkway (FW) having an FW entrance open at a first upstream end, and an FW exit open at a second downstream end of the fenced walkway, compelling individuals to walk in single line queue over the fenced walkway, a confinement structure (CS) having a CS interior separated from a CS exterior by a peripheral wall accommodating an open CS entrance opening adjacent the FW exit, and an open CS exit open, the facility being configured for permitting passage of individuals, solely from the FW entrance to the CS exit opening, via the FW exit and the CS entrance opening,

- At least one one-way passage control device, disposed in the CS interior, operable in a first passage mode for permitting free-passage of an individual, and in a second releasable locked mode for releasably confining a single individual at a time to the CS interior,

- A monitoring unit (MU) configured for management, control, and operation of the facility, including:
 - At least one sensor operative which monitors each individual passing through the facility, to detect prohibited articles,
 - A processing device which derives results in real time from the monitoring of individuals performed by the at least one sensor, and
 - A controller which controls operation of the at least one passage control device, whereby the at least one passage control device is releasably locked by command when prohibited articles and substances carried by an individual are detected by the monitoring unit.
A method for detecting extraneous matter in a fluid including the steps of applying an energy source to electrodes located in a fluid, measuring real and imaginary electrical impedance values across the electrodes for a plurality of different frequencies of alternating energy and identifying at least one characteristic of an extraneous matter in the fluid.
This invention concerns the use of a compound of formula (I'), a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine and a stereochemically isomeric form thereof, wherein Z is halo; C₁₋₆ alkyl; C₁₋₆ alkylcarbonyl; C₁₋₆ alkoxy carbonyl; C₁₋₆ alkyloxycarbonyl; amino carbonyl; aminocarbonyl; mono -or di(C₁₋₆ alkyl)aminocarbonyl; C₁₋₆ alkyl substituted with hydroxy, carboxyl, cyano, amino, amino substituted with piperidinyl, amino substituted with C₁₋₆ alkyl substituted piperidinyl, amino substituted with mono -or di(C₁₋₆ alkyl)aminocarbonyl, C₁₋₆ alkyloxycarbonyl, C₁₋₆ alkyloxy, piperazinyl, morpholinyl, thiomorpholinyl, poly halo C₁₋₆ alkyl; cyano; amino; mono -or di(C₁₋₆ alkyl)aminocarbonyl; C₁₋₆ alkyloxycarbonyl; C₁₋₆ alkyloxycarbonyl; amino S(=O)₂ -; amino S(=O)₂ -C(=N-R)NR₂; Q is optionally substituted C₃₋₆ cycloalkyl, phenyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, indazolyl, or imidazopyridyl, or Q is a radical of formula (b-1), (b-2), or (b-3), or L is optionally substituted phenyl or an optionally substituted monocyclic 5 or 6-membered partially saturated or aromatic heterocycle or a bicyclic partially saturated or aromatic heterocycle; aryl is optionally substituted phenyl; for the manufacture of a medicament for the prevention or the treatment of inflammatory and/or auto-immune diseases mediated through TNF-α and/or IL-12.
The invention relates to the use of flibanserin for the preparation of a medicament for the treatment of disorders of sexual desire.

The present invention facilitates in silico evaluation of molecules for biological
activity by providing a computer-based method to predict whether oligonucleotides may possess biological activity and the efficacy of the biological activity based on the three-dimensional structure and charge characteristics of the oligonucleotides. Biological activities include, but are not limited to, cellular proliferation, induction of cell cycle arrest and apoptosis.

[54] ENZYMATIC PROCESS FOR THE PREPARATION OF SUBSTITUTED 2 - AMINO - 3 (2 - AMINOPHENYLSULFANYL) - PROPIONIC ACID AND INTERMEDIATES THEREOF AND USES THEREOF

[22] 19.09.2002
[51] Int. Cl.(2009.01) C07C 323/63, C07D 281/10, C12P 13/04
[71] F. HOFFMANN-LA ROCHE AG, SWITZERLAND
[87] WO/2003/029477
[74] REINHOLD COHN AND PARTNERS, 26A HABARZEL ST., RAMAT HACHAYAL 69710

The compounds of formula (I) are useful for the preparation of 1,5-benzothiazepines which are useful as enzyme inhibitors, such as protease, interleukin-1β-converting enzyme, elastase or angiotensin enzyme, GPCR antagonists (cholecystokinin, angiotensin II receptor). The present invention relates to a new process for the preparation compounds of formula (I), wherein R1, R2, R3 and n are as described in

י''ה כстью המש''ט-10 May 31, 2010
the description which process comprises reacting compounds of formula (II), wherein R1, R2, R3, n and R4 are as described in the description, with a protease in an aqueous system containing an organic co-solvent.

[160556] 11.08.2001

[54] DIARYL CYCLOALKYL DERIVATIVES, PHARMACEUTICAL COMPOSITIONS COMPRISING THEM, PROCESS FOR PREPARING SAME AND USE THEREOF

[22] 17.08.2002

[51] Int. Cl.(2009.01) A61K 31/421, A61P 03/00, 19/10, 25/28, 29/00, 43/00, C07D 263/32, 263/36, 413/06, 413/12

[71] SANOFI-AVENTIS DEUTSCHLAND GMBH, GERMANY

[74] EITAN, PEARL, LATZER AND COHEN ZEDEK,
P.O.B. 12688, HERZLIYA 46733

[57] The invention relates to diaryl cycloalkyl derivatives and their physiologically compatible salts and physiologically functional derivatives. The invention also relates to compounds of formula (I), in which the groups are defined as per the description, to their physiologically compatible salts and to a method for producing the same. The compounds have lipid and/or triglyceride reducing properties and are suitable e.g. for treating lipid metabolic disorders, type II diabetes and syndrome X.

E105/2002 10223273.3

iblings
The present invention is directed to chemical compositions of substituted thioacetamides, processes for the preparation thereof and uses of the compositions in the treatment of diseases.
The single use catheter has a lumen (20) with a hydrophobic filter tip at one end. The lumen is divided into two parallel conduits (22, 24). A first conduit terminates in a one-way valve (32). A syringe (52) is attached to the one-way valve. Air, saline solution or sterilized water can be introduced through the one-way valve and inflate a cuff (26) about the lumen. The second parallel conduit terminates in a charcoal filter (44) for elimination of bowel gas. The one-way valve prevents deflation of the cuff unless the lumen is cut to allow the fluid from the cuff to exit and deflate the cuff.
A radar antenna for a guided missile is calibrated in flight using a point source of microwave radiation and a lens to emulate a far field source. The microwave source and lens fit behind a metal cap at the leading end of the radome and so do not adversely affect the radar. A variety of techniques to power the point source are disclosed, and a variety of lens arrangements are disclosed. The invention allows a radar antenna to be calibrated in flight, and so insures against mis-calibration due to aging components as well as the heat and mechanical forces associated with storage and/or launch of the missile.
An arrangement for protecting a desk computer against theft comprising:

(A) a casing (20) having an open front side, a bottom wall, two side walls, a top wall and at least partly open rear wall, the computer housing being insertable into the casing through said open front side;

a portion (22) associated with one of the side-walls extending perpendicularly thereto and provided with a through-going passage;

means (26) for securing the casing to a stationary support;

the rear wall of the computer housing comprising a dedicated slot (14); and

(B) a key-operated lock member (30) comprising a turntable tip (34) fitting said slot and a projection (38) fitting said passage,

so that by mounting the lock member while the tip passes the slot and the projection inserted into the passage, and locking the tip in a 90° turned position the computer becomes arrested to the casing intermediate said computer side-wall portion.
ARTIFICIAL INTERVERTEBRAL DISC

An artificial disc having a pair of opposing plates (330, 400) for seating against opposing vertebral bone surfaces, separated by at least one spring mechanism. The preferred spring mechanism is at least one spirally slotted belleville washer, and in some embodiments the belleville washer (330b) is also radially thinning or thickening. For double washer embodiments, the wide ends of the washers seat against respective opposing plates, in some embodiments each being maintained somewhat to a retaining wall (306) and ring (310) or a circular recess and retaining shield. For single washer embodiments, the narrow end of the washer is formed with a curvate socket (332b) for rotatably mounting onto a semispherical protuberance (410) extending from one plate.

COMPOSITION COMPRISING A VIRUS-LIKE PARTICLE OF A RNA-PHAGE BOUND TO AN IL-5, IL-3 OR EOTAXIN ANTIGEN

A composition comprising a virus-like particle of a RNA-phage bound to an IL-5, IL-3 or eotaxin antigen.
The present invention is related to the fields of molecular biology, virology, immunology and medicine. The invention provides a composition comprising an ordered and repetitive antigen or antigenic determinant array, and in particular an array comprising a protein or peptide of IL-5, IL-13 or eotaxin. More specifically, the invention provides a composition comprising a virus-like particle and at least one protein, or peptide of IL-5, IL-13 and/or eotaxin bound thereto. The invention also provides a process for producing the conjugates and the ordered and repetitive arrays, respectively. The compositions of the invention are useful in the production of vaccines for the treatment of allergic diseases with an eosinophilic component and as a pharmaccine to prevent or cure allergic diseases with an eosinophilic component and to efficiently induce immune responses, in particular antibody responses. Furthermore, the compositions of the invention are particularly useful to efficiently induce self-specific immune responses within the indicated context.
The present invention concerns a new method of preparing granules comprising 5-aminosalicylic acid and a new method of preparing an oral pharmaceutical composition for the treatment of ulcerative colitis or Crohn's disease comprising as active ingredient 5-aminosalicylic acid, the method comprising granulation with water as a solvent.

A method for producing 1,3-diglyceride oils from triglyceride containing oils is disclosed. The method uses alkali metal salts or alkali earth metal salts of monocarboxylic or di-carboxylic acids to drive glycerolysis under conditions such that commercial, food-quality 1,3-diglyceride oils are produced.
System and method for data quality management and control of heterogeneous data systems. In a preferred embodiment, the system functions as a resource management tool that simplifies the process of managing data systems. More specifically, the system provides connections to source data systems, allows users to view data structures and enables simple management and manipulation of data contained within possibly heterogeneous data systems. The system utilizes an advanced graphical user interface, which allows users to access and manage systems using a simple point and click methodology. The system uses portals (16), which are tools that collect, visualize, analyze and directly edit data sets associated with different data sources. In another aspect, the system keeps track of its operational status (10), allowing users to automatically reproduce in one logon session work done in the previous session, without the need to replicate data analysis. Various additional features of the system and methods are disclosed and illustrated.
The invention concerns a novel crystalline polymorph of rimonabant, its preparation method and pharmaceutical compositions containing said novel polymorph.
against the effects of the weather even over long time periods and for large-surface applications e.g. for hectare-sized surfaces to be protected. According to the invention, the protective skin (2,3) is fixed on the carrier unit (1,8,9,10,11,12) in such a way that it is partially pivotable, being able to swing out of a rest position due to the effect of wind energy, and at least one net (9), interweaving structure and/or grid structure on which the protective skin (2,3) lies is provided.

SYNTHESIS AND THERAPEUTIC USE OF 2-
ARALKOXYADENOSINES AND 2-
ALKOXYADENOSINES

24.10.2002
25.10.2001
26.04.2002
A61K 31/7076, A61P 07/02, C07H 19/167, 19/173
KING PHARMACEUTICALS RESEARCH & DEVELOPMENT, INC., U.S.A.
ALLAN R. MOORMAN
WO/2003/035662
JMB, FACTOR & CO. LTD., HAR HOTZVIM HI-TECH PARK,
P.O.B. 45087,
JERUSALEM 91450

The invention provides new methods for synthesis of 2-aralkyloxyadenosines and 2-alkoxyadenosines. The invention is particularly useful for synthesis of 2-[2-(4-chlorophenyl)ethoxy]adenosine. Preferred methods of the invention include activating a guanosine compound followed by hydrolysis; alkyling the hydrolyzed compound with subsequent amination to provide a 2-aralkyloxyadenosine or a 2-alkoxyadenosine.

May 31, 2010
The invention relates to a medicament containing a compound of general formula (I), where R1 = independently, a straight or branched, saturated, singly- or multiply-unsaturated, optionally substituted C11-C21 alkyl, alkenylene or alkinyl group, preferably a C11-C15 alkyl, alkenylene or alkinyl group, particularly a C11-C13 alkyl, alkenylene or alkinyl group, most preferably a C13 alkyl group, R2 = independently, a straight or branched C1-C8 alkyl, alkenylene or alkinyl group, preferably a C1-C6 alkyl, alkenylene or alkinyl group, in particular a C2-C4 alkyl, alkenylene or alkinyl group, most preferably a C3 alkyl group, a -\(\text{CH}_2\)-(\text{OH})\(n\)H group with \(n = 1 \) to 10, preferably \(n = 1 \) to 5, \(m = 1 \) to 5, preferably \(m = 1 \) to 3, a -\(\text{CH}_2\)-(\text{OH})\(p\) \([\text{CH}_2\text{-(R3)}] \)- group, where \(R3 = \text{independently} \) H or OH, \(p = 1 \) to 7, preferably \(p = 1 \) to 4, a pentose group or a hexose group, as therapeutically active agent, alone or in combination with one or several further pharmaceutical agents as a combination preparation for the treatment of viral skin diseases and/or tumour diseases, in particular caused by human papilloma virus (HPV) and/or herpes viruses and a topically acting medicament formulation and the use thereof.
A method for transmitting a control signal for multimedia service data of UMTS (Universal Mobile Telecommunications System) includes MBMS service data that can be transmitted in a wireless system providing various types of MBMS service. An MBMS scheduling block including an MBMS service identifier list and scheduling information of MBMS RB set information and an MBMS service information block including one MBMS service identifier and MBMS RB set information for a corresponding service are transmitted to a terminal group.

[54] METHOD FOR TRANSMITTING CONTROL SIGNAL FOR MBMS DATA IN WIRELESS MOBILE COMMUNICATION SYSTEM

[22] 13.08.2003
[51] Int. Cl.(2009.01) H04B 07/24, 07/26, H04W 04/06, 08/00, 76/00, 76/02
[71] LG ELECTRONICS INC., REPUBLIC OF KOREA
[87] WO/2004/017541

[74] EITAN, PEARL, LATZER AND COHEN ZEDEK,
P.O.B. 12688,
HERZLIYA 46733

A method for transmitting a control signal for multimedia service data of UMTS (Universal Mobile Telecommunications System) includes MBMS service data that can be transmitted in a wireless system providing various types of MBMS service. An MBMS scheduling block including an MBMS service identifier list and scheduling information of MBMS RB set information and an MBMS service information block including one MBMS service identifier and MBMS RB set information for a corresponding service are transmitted to a terminal group.
USE OF OMEGA INTERFERON IN THE MANUFACTURE OF A MEDICAMENT FOR TREATING VIRAL DISEASE

A method of treating an immunologic, proliferative, or infectious disease in a warm-blooded animal is disclosed. The method comprises administering to the animal omega interferon (IFN) at a dosage and activity for the disease state treated sufficient to induce a therapeutic response in the animal, which dosage and activity for the disease state treated is higher than would be well-tolerated based on data for non-omega IFN's. The omega IFN is administered alone or in combination with a therapeutically effective amount of at least one adjunctive therapeutic agent. Also disclosed is an article of manufacture useful for treating an immunologic, proliferative, or infectious disease, which article comprises (1) omega IFN in a form suitable for administering a therapeutically effective amount of the omega IFN to the subject in order to induce the desired therapeutic response (2) instructions for administering the omega IFN as desired, that is higher than would be well-tolerated based on data for non-omega IFNs.
ARCHITECTURE FOR CONNECTING A REMOTE CLIENT TO A LOCAL CLIENT DESKTOP

Architecture for generating and maintaining a terminal-services connection from an external client (204) to an internal intranet client (206) behind a firewall (210) and/or router. The external user is first authenticated after which the external client (204) is passed to a remote user portal (212). A listing of available internal computers is presented to the external client user, the selection of one initiates an intranet server (214) to create a listening socket port thereon, and a socket port on the selected internal client (206). The server (214) creates a thread that manages the terminal-services connection between the external client and the internal client by listening for traffic and forwarding the traffic between the ports.
This invention provides a system for producing cells of the hematopoietic lineage from embryonic stem cells. Differentiation is conducted in the presence of hematogenic cytokines and other factors listed in the disclosure. The cell population that is obtained is remarkably enriched in CD45 +ve cells, a marker of early hematopoietic precursor with self-renewing capacity. Including a bone morphogenic protein during the differentiation process enhances the ability of the cell population to form secondary colonies. Because of the enormous replicative capacity of embryonic stem cells, this provides an important new commercial source of hematopoietic cells.
A stapling device comprises of an articulation section (20), a staple cartridge (16) containing one or more arrays of staples 24, two bores associated with each said array, and part of a staple-firing mechanism, and anvil portion (12) comprising two locking screws (28), wherein said cartridge is located at one end of said articulation section and said anvil portion is located at the other end of said articulation section; characterized in that:

(a) the facing surfaces of said anvil and said cartridge are curved surfaces having matching curvatures such that, when said articulation section is bent bringing said curved facing surfaces of said anvil and said cartridge close to each other, said curved surfaces help to correct transverse misalignment; and

(b) the center of curvature of the cartridge face in the area of the array is lowered relative to the center of curvature of the rest of the surface, resulting in a surface having two levels, said two levels assisting in correcting longitudinal misalignment; thereby bringing said locking screws in said anvil directly opposite said bores in said cartridge, thereby bringing the parts of said stapling device into the correct working relationship.
METHOD AND APPARATUS FOR MARKING ARTICLES

Method and apparatus for applying unique composite indicia or markings to a succession of articles, in which each unique composite indicium comprises two or more indicium. At least part of each of the indicia may be co-located at a predetermined location on the article with such co-location being unique or distinct for each composite indicium for each article. The indicium may be overprinted with one or more images, logos or colour-shemes. A code (e.g. an alphanumeric code) that is stored in a database may be derived from the composite indicium from one or more mathematical properties. The code may be later accessed for identifying or verifying the article with indicium.
The present invention describes a space-time adaptive processing (STAP) system and method combining adaptive processing with automatic phase calibration providing an improved signal-to-noise ratio of a received signal. The adaptive processing is accomplished by calculating a reduced rank approximation of a factorization of a covariance matrix via a partial singular value decomposition of the data matrix. According to the present invention, the calculation of a white noise gain constraint does not require knowledge or estimation of the noise floor. Automatic phase calibration using the signal data as the calibration source combined with the adaptive processing according to the present invention provides and enhance signal-to-noise ratio and clutter suppression.
A wide area monitoring and tracking system (300) for monitoring and tracking a plurality of individuals, the system comprising:

- A computerized central monitoring server (302) comprising a processor for processing data, a memory device for storing data and a display device for displaying data;
- A plurality of transmitting tags (318, 320) attachable to monitored individuals, each having a unique identification code, each of the plurality of tags includes a transmitter which periodically broadcasts a signal carrying a first data regarding the individual to whom the tag is attached, the first data includes the tag’s identification code; and
- A plurality of local monitoring devices (306, 308) distributed at predetermined locations, each of the plurality of local monitoring devices comprises a receiver receptive to signals transmitted from any of the plurality of tags when a tag is within reception range of a local monitoring device, a data processor for processing the first data carried by said signals, a memory device, and a communication device for communicating according to predefined schedule a second data to the central monitoring server, the second data includes whole or part of the first data and additional data concerning identity and status of the local monitoring device communicating the second data.
A cutting tool for forming a hole in a wall of a plastic flat pipe by virtue of a cutting element, capable to penetrate through the wall upon applying a force thereon, the tool comprising:

(a) a body portion defined by a near grasp portion and by a frontal portion, said frontal portion is provided at its lower extremity with a through going vertical passage, said passage is adapted for accommodating the cutting element therein and for guiding the cutting element there-along from an uppermost position to a lowermost position; the frontal portion of the body portion is provided with a mounting pin, said body portion is provided with an upper compartment for deployment therein a pushing member and a spring means; and

(b) a pressure handle connected by the mounting pin to body portion so as to enable pivotal displacement of the pressure handle between an erected position and a depressed position, wherein said pivotal displacement of the pressure handle entails forcible displacement of the cutting element from the uppermost position to the lowermost position or vice versa, wherein said pushing member is connected to the pressure handle and to the cutting element such that the pushing member pushes the cutting element down when the pressure handle is displaced from the erected position.
to the depressed position or forcibly pulls the cutting element up when the pressure handle is displaced from the depressed position to the erected position, and said pressure handle is provided with an auxiliary mounting pin and said pushing member is provided with a window, wherein said auxiliary pin passed through said window to ensure that the pushing member is forcibly pulled up by the pressure handle when the pressure handle displaces from the depressed position to the erected position.

[11][21] 162557

AQUEOUS DISPERSIONS OF POLYMER PARTICLES

2002/950772 14.08.2002 AU
[51] Int. Cl.(2009.01) C08F 02/22, C09D 157/00
[71] UNIVERSITY OF SYDNEY,
AUSTRALIA
[87] WO/2003/055919
[74] REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

The invention provides a method for preparing an aqueous dispersion of polymer particles comprising the following steps: (i) preparing a dispersion having a continuous aqueous phase, a dispersed organic phase comprising one or more ethylenically unsaturated monomers, and an amphiphilic RAFT agent as a stabiliser for said organic phase, and (ii) polymerising said one or more ethylenically unsaturated monomers under the control of said amphiphilic RAFT agent to form said aqueous dispersion of polymer particles, novel amphiphilic RAFT agents for use in this method, novel RAFT agents useful in making these amphiphilic RAFT agents and methods for their manufacture.
The invention provides a method for configuring a virtual representation of an assembly of a plurality of components, by: I) storing a first set of data representing a plurality of categories of components, and, for each category, parameters and constraints defining limitations for configurations of each of the components, II) generating and storing a second set of data representing the assembly of a plurality of components, while respecting the constraints associated with each component and constraints for the assembly, and generating a third set of data representing a present configuration, III) repeating the step II) by: a) adding, to the second and third set of data, data which represent a component and which are derived from the first set of data, or b) deleting data representing a component of the second and third set of data, or c) amending data representing a previously added component of the second and third set of data, while respecting the constraints associated with each component and constraints for the assembly, so as to arrive at an updated version of the second and third set of data.
A method of monitoring/controlling Thysanoptera (hereafter thrips) by the use of a behaviour modifying compound of Formula (1), wherein Formula (1) is: where R₁ is a C₈-C₁₂ group and R₂ is a C₂-C₈ group.

APPARATUS AND METHOD FOR RADIAL AND ANGULAR OR ROTATIONAL ANALYSIS OF IMAGES FOR SHAPE CONTENT AND MATCHING

[22] 16.01.2003

May 31, 2010
A segmented radial spatial light modulator (50) has an active optic area (54) comprising a plurality of radially extending active optic modulator sectors (500, 510, 520, 530, 540, 550, 560, 580, 600, 610, 620, 630, 640, 650) disposed at various angular orientations with respect to a central axis (40). The segmented radial spatial light modulator (50) is used in separating and isolating portions of Fourier transform optic patterns (32) from images for characterization of images by shape for recording, storing, retrieving, searching, and comparison to other images for matches and near matches. The images can be ghosted to increase optical power in the Fourier transform optic pattern (32) without adding new shape content and for grading comparisons to other image shape characteristics for identifying near matches in addition to matches.
The invention relates to insecticidal mixtures containing a compound of formula (I) and at least one other known agent from the series abamectin, emamectin or emamectin benzoate, methiocarb, ß-cyfluthrin, and lambda-cyhalothrin. Also disclosed is the use of said mixtures for protecting plants from infestations by parasites.

![Chemical structure](image1)

The present invention provides compounds of formula (I), or a pharmaceutically acceptable derivative thereof, wherein R_1, R_2, V_1, V_2, and V_3 are as described in the specification. These compounds are inhibitors of protein kinase, particularly inhibitors of AKT, PKA, PDK1, p70S6K, or ROCK kinase, mammalian protein kinases involved in proliferative and neurodegenerative disorders. The invention also provides pharmaceutical compositions comprising the compounds of the invention and methods of utilizing those compositions in the treatment of various disorders.
A system and method for displaying an interactive screen, such as an end-user license agreement or verification form, on the graphic display (13) of a wireless device (12) when the wireless device connects to a network server (26) on a wireless network (14) and attempts to access or download software applications and data. The user of the wireless device (12) must then affirmatively interact with the interactive screen in order to access or download a software application or data from the network server. The interactive screen can be transmitted from the network server (26) where the wireless device seeks to access or download an application or data, or can be transmitted from a separate server to the wireless device (12). The records of the wireless device-server interactions can be stored on a network server or other data stores on the wireless network.
CONTROLLED SYNTHESIS OF ZIPRASIDONE AND COMPOSITIONS THEREOF

The subject invention provides a ziprasidone composition that comprises not greater than 1000 ppm des-chloro ziprasidone, preferably not greater than about 500 ppm des-chloro ziprasidone, and more preferably not greater than about 100 ppm des-chloro ziprasidone. Methods for synthesizing and using such ziprasidone compositions are also provided.
not yet been published

METHOD FOR IMMUNIZING PLANTS AGAINST BACTERIOSES

The invention relates to a method for immunizing plants against bacterioses, characterized in that the plants, the soil, or seeds are treated with an effective quantity of a compound of formula (I), wherein: X represents halogen, C₁₋₄ alkyl or trifluoromethyl; m is equal to 0 or 1; Q represents C (=CH-CH₃) -COOCH₃, C (=CH-OCH₃) -COOCH₃, C (=CH-OCH₃) -CONHCH₃, C (=N-OCH₃) -COOCH₃, C (=N-OCH₃) -CONHCH₃ or N (=OCH₃) -COOCH₃; A represents -O- B, -CH₂O- B, -CH₂S- B, -OCH₂- B, -CH=CH- B, -C=C- B, -CH₂O- N=C (R₁) -B or -CH₂O- N=C (R₁) -C (R₂) =N-OR₃, whereby B represents optionally substituted phenyl, naphthyl, 5-membered or 6-membered hetaryl or 5-membered or 6-membered heterocycl, containing one to three N atoms and/or one O atom or S atom or one or two O atoms and/or S atoms; R₁ represents hydrogen, cyano, alkyl, alkyl halide, cycloalkyl, alkoxy; R² represents optionally substituted phenyl, phenylcarbonyl, phenylsulfonyl, 5-membered or 6-membered hetaryl, 5-membered or 6-membered hetarylcarbonyl or 5-membered or 6-membered hetarylcarbonyl or 5-membered or 6-membered hetaryl, 5-membered or 6-membered hetarylcarbonyl or 5-membered or 6-membered hetarylcarbonyl, or alkyl, cycloalkyl, alkenyl, alkenyl, alkenylcarbonyl, alkenylcarbonyl, alkenylcarbonyl, alkenylcarbonyl, alkenylcarbonyl, alkenylcarbonyl, alkenylcarbonyl, alkenylcarbonyl, or C (=NOR₃(a)) -OR₃(b); and, R₃ represents hydrogen, optionally substituted alkyl, alkenyl and alkynyl. This effective quantity of the compound is absorbed by the plants or seeds.
A method of carrying out protection of data traffic in a multi-channel multi-section ring-like optical communications network by simultaneously using Optical Multiplexed Section (OMS) protection and Optical Channel (OCH) protection, the method comprises a step of selecting an optical signal in an OCH protected optical channel, in case of a fault in a section of said network, by relying on an indication associated with OMS switching functionality required to overcome said fault, wherein the communication network consisting of no more than two ring-like configurations respectively formed by no more than two optical fibers connecting network elements, one of said configurations is considered a main configuration and the other is considered a protecting configuration, the method comprises:

providing the OMS protection for at least one section of the network by ensuring, in case of a failure in said section, switching of the data traffic from one of said configurations to another of said configurations at each of two ends of said section;

providing the OCH protection for at least one optical channel in the network, by transmitting data related to said optical channel from one of said network elements being a source point of said channel to another of said network elements being a destination point of said channel by means of two optical signals, wherein one of said optical signal is transmitted via the main configuration and another of said optical signals is transmitted via the protecting configuration;
said selection being performed by rejecting the one of the two optical signals of said OCH protected channel, that has undergone said switching from one of said configurations to another of said configurations at least once, by relying on said indication.

[11][21] 163582

[54] REACTIVE DISTILLATION PROCESS FOR THE ALKYLATION OF AROMATIC HYDROCARBONS

[22] 16.01.2003
[51] Int. Ci.(2009.01) C07B 61/00, C07C 02/00, 02/64
[71] SASOL NORTH AMERICA INC., U.S.A.
[87] WO/2003/076369

REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

[57] A unified process for reactive distillation under pressure for the alkylation of light aromatic hydrocarbons such as benzene and cumene with straight chain C6-C18 olefins using a solid acid alkylation catalyst supported in the reflux zone of the distillation column (column 2). The process is continuous, using a reactive distillation configuration such that at least a portion of the olefin (7) is injected below the benzene rectification zone at the top of the column. The aromatic hydrocarbon (17) is injected continuously at a low rate above the rectification zone (H) at the base of the column and above the reboiler (40). The alkylation reaction takes place primarily in the liquid phase on the solid acid catalyst and is characterized in that the molar ratio is adjustable up to about 100/1, through adjustment of the internal column operating pressure, the benzene reflux rate, the amount of benzene removed from the reflux condenser to storage or from the reboiler with the distillation column operated at or near total aromatic hydrocarbon reflux. The unexpectedly high liquid phase aromatic hydrocarbon to olefin molar ratios achieved in the reactive distillation column increases the selectivity to mono-alkylated aromatics and helps stabilize catalyst lifetime.
IC CHIP FOR IDENTIFICATION, DATA-READING METHOD AND DATA-WRITING METHOD

Restrictions on the frequency of a carrier signal are removed. This invention comprises a power section for receiving the carrier signal and creating an internal voltage, a clock-generating section for creating an internal clock based on a clock pulse that is carried by the carrier signal, a memory section, a writing section for storing data that is carried on an optical signal in the memory section, and an output section for reading the data in the memory and load-modulating the carrier signal.
Disclosure are synergistic herbicidal agents comprising: (A) one or several herbicides from the group of mesosulfuron or the salts thereof; (B) one or several herbicides from the group of iodosulfuron or the salts thereof; and (C) one or several herbicides from a list of 63 agents.

The invention relates to a food additive comprising carrageenate iota and sodium.
stearyl-2-lactylate (SSL). The inventive food additive, which has emulsifying and/or stabilising properties, can be used in the food industry and in the production of food products.

METHOD AND APPARATUS PROVIDING MULTIPLE TEMPORARY BLOCK FLOW (TBF) MAPPING TO UPPER LAYER WHEN OPERATING IN GSM/EDGE RADIO ACCESS NETWORK (GERAN) A/GB MODE

Disclosed is a wireless communications system (5), in the preferred embodiment a GSM/EDGE Radio Access Network system (300), that includes a Logical Link Control (LLC) layer (265) of a mobile station (100) and a LLC layer (30E) of a Serving General Packet Radio Service Support Node (SGSN) (30) that are coupled together through a Gb interface (310). The system (5) operates for establishing and operating a plurality of Temporary Block Flows (TBF) for transferring Packet Data Units (PDUs) in either an uplink or a downlink direction between the LLC (265) layer of the mobile station (100) and the LLC (30E) layer of the SGSN node (30). The system (5) operates at a level of the LLC (30E) layer and a Radio Link Control (RLC)
(260) layer for distinguishing PDUs belonging to a first TBF from PDUs belonging to a second TBF based on information associated with each PDU, and maps PDUs into the appropriate one of the first TBF or the second TBF on the information.

[54] QUINOLINE DERIVATIVES, PROCESSES FOR THEIR PREPARATION, PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND THEIR USE IN THE MANUFACTURE OF MEDICAMENTS FOR THE TREATMENT OF CNS AND OTHER DISORDERS

[22] 25.03.2003
[31] 0207289.0 [32] 27.03.2002 [33] GB 0225678.2 04.11.2002 GB
[51] Int. Cl.(2009.01) A61K 31/495, A61P 03/00, 25/00, 43/00, C07D 215/00, 401/10, 413/12, 417/12
[71] GLAXO GROUP LIMITED, UNITED KINGDOM
[87] WO/2003/080580
[74] LUZZATTO & LUZZATTO, INDUSTRIAL PARK, OMER,
P.O.B. 5352, BEER-SHEVA 84152
[57] The present invention relates to quinoline compounds of formula (I) or a pharmaceutically acceptable salt thereof, wherein R¹ and R² independently represent hydrogen or C₁₋₆ alkyl or R¹ is linked to R² to form a group (CH₂)₂, (CH₂)₃ or (CH₂)₄:

"נ"ח הבסן הוש"ט-10 May 31, 2010
R², R³ and R⁴ independently represent hydrogen, halogen, cyano, -CF₃, -CF₂O, C₁-6 alkyl, C₁-6 alkoxy, C₁-6 alkanoyl or a group -CONR⁶R⁷; m represents an integer from 1 to 4, such that when m is an integer greater than 1, two R² groups may instead be linked to form a group CH₂, (CH₂)₂ or (CH₂)₃; n represents an integer from 1 to 3; p represents 1 or 2; A represents a group -Ar¹ or -Ar²Ar³; Ar¹, Ar² and Ar³ independently represent and aryl group or a heteroaryl group, both of which may be optionally substituted by one or more substituents having pharmacological activity, to processes for their preparation, to compositions containing them and to their use in the treatment of CNS and other disorders.
The present invention concerns novel antibody variants, particularly anti-HER2 antibody variants having substitutions at positions within the variable domains of the HER2 extracellular domain.
heavy and light chains.

The applications for division from this application have not yet been published.

[11][21] 164435

[54] SYSTEM AND METHOD FOR SCINTILLATION SUPPRESSION IN INTENSIFIED DIGITAL VIDEO

05.10.2004
697198
30.10.2003
30.10.2003
30.10.2003
US
Int. Cl.(2009.01) H04N 05/213, 05/217, 05/238
ITT MANUFACTURING ENTERPRISES, INC.

REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

A method for scintillation suppression of video images includes (a) receiving a frame of pixels having intensity values; (b) identifying pixels in the received frame having scintillation noise; (c) modifying intensity values of pixels in the received frame, identified as having scintillation noise, to form a filtered frame of pixels; (d) counting the number of pixels modified in step (c); and (e) displaying the filtered frame of pixels, if the amount of pixels counted is less than a threshold value.
An active connector for use in a local area network (LAN) including at least one LAN node. The active connector includes an active connector housing, at least one first plurality of first electrical contacts mounted in the housing and arranged for detachable connection with corresponding electrical contacts of at least one plugs, at least one second plurality of second electrical contacts mounted in the housing and arranged for connection with corresponding electrical contacts of local area network equipment and active power control circuitry located within the housing and coupled to at least some of the first and second electrical contacts, the active power control circuitry being operative for controlling the supply of electrical power over the local area network cabling to at least one node of the local area network.
COHERENT AVERAGING FOR MEASURING TRAVELING WAVE TUBE AMPLIFIER NONLINEARITY

A method and system provide the ability to measure a transmission performance characteristic. A signal is received and demodulated 1302. An ideal signal 1320 is generated 1304 from the demodulated signal. The received signal is coherently averaged 1324/1326 to reduce noise. The performance characteristic is the estimated TWTA nonlinearity from a difference between the coherently averaged ideal signal and received signal.
This invention is in the area of methods and compositions for the inhibition of the expression of VCAM-1 and, in particular, for the treatment of diseases mediated by VCAM-1, including cardiovascular and inflammatory diseases.
An element (9) in the path of ions (18) in a mass spectrometer is adaptively mounted so that variations in the path ions take can be compensated for in order to improve the resolution of the mass spectrometer. Preferably the element is mounted on at least one variable shape mounting element (37) which can vary its length in response to signals from remote control means (21).

Laser transponder (1) for disabling a laser-based speed monitor (7), which is transmitting a monitor laser beam at a moving vehicle by transmitting a jamming laser beam to the laser-based speed monitor. The monitor laser beam is in the shape of a monitor signal (8; s1; sm) comprising monitor pulse trains (65) emitted with a first frequency f1, while the jamming laser beam is in the shape of a jamming signal (11; s2; sj) comprising jamming pulse trains (67) emitted with a second frequency f3.
This specification was examined in accordance with regulation 35 of the Patent Regulations, 5728 - 1968

[11][21] 165044

[54] GENERATION OF USER EQUIPMENT IDENTIFICATION SPECIFIC SCRAMBLING CODE FOR THE HIGH SPEED SHARED CONTROL CHANNEL

[22] 05.05.2003
[31] 60/378509 07.05.2002 [32] US
60/378170 13.05.2002 [33] US
187640 01.07.2002 US

[51] Int. Cl.(2009.01) H04N 07/167
[71] INTERDIGITAL TECHNOLOGY CORPORATION, U.S.A.
[87] WO/2003/096694

[74] REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

[57] A code is produced for use in scrambling or descrambling data associated with a high speed shared control channel (HS-SSCH) for a particular user equipment. A user identification of the particular user equipment comprises L bits. A 1/2 rate convolutional encoder (14) processes at least the bits of the user identification by a 1/2 rate convolutional code to produce the code.
The applications for division from this application have not yet been published.

MEDICAL IMPLANT WITH A COATING TO INHIBIT INFECTION

Packaging methods and apparatus for bonding a lidding web (108) to a tray web (104), characterized in that the lidding web (108) is placed under tension in both the longitudinal and lateral directions before being bonded to a tray web (104). A tray web (104) having recesses (606) and channels that form a conduit when the tray web is overwrapped with a lidding web (108) is provided. A lidding web has microperforations to control the transfer of gases.
Compounds of Formula I, wherein R₁-R₈ are defined herein are provided, together with pharmaceutically acceptable salts, hydrates, metabolites, and/or prodrugs thereof. Uses of these compounds for inhibiting beta amyloid production and for the prevention and treatment of Alzheimer’s Disease and Down’s syndrome are described.

The applications for division from this application have not yet been published.

The patent and the apparatus for gas purification are not yet published.
A method for gas purification wherein a mixed gas containing a rare gas and nitrogen as main components and hydrogen, a reaction product comprising nitrogen and hydrogen and steam as trace components is freed of the trace components, which comprises an adsorbing step of removing the reaction product comprising nitrogen and hydrogen and steam, a hydrogen oxidation step of converting hydrogen to steam by a catalytic hydrogen oxidizing reaction in the presence of oxygen, and then a drying step of removing the steam formed in the hydrogen oxidation step. When the mixed gas further contains a nitrogen oxide, a denitration step of converting the nitrogen oxide to nitrogen and steam in the presence of a reducing substance is carried out prior to the above adsorption step.
A collapsible container (10) with angularly related multiple folding sections (34), each section (34) extending at an angle to the vertical, and flexure zones (40) between adjacent sections (34) for flexibly moving the sections between a first open position in the expanded container and a second position folded upon itself in the collapsed container, the flexure zones (40) resisting movement of the sections (34) in both the fully expanded container and the collapsed container, as well as any intermediate position wherein only selected flexure zones (40) are in an open position.
A mobile communication terminal with a processor control is disclosed, in which is installed at least one independent humidity sensor, controlled by the processor for a recording of humidity in order to reduce or prevent corrosion in mobile radio terminals. Should humidity be recognised within the mobile radio communication terminal at a particular time, then at that time or possibly later, a complete or partial switching off of the mobile communication terminal is achieved. In a preferred embodiment of the invention, during a partial shutdown, at least those components necessary for a recognition of humidity and for reactivating the whole device remain active. Furthermore, functional components can be protected from corrosion just by means of a reduction in voltage differentials on the ingress of humidity.
pyrazole compound of Formula (II), wherein X^1 is halogen and L, R, k and X^2 are as defined in the disclosure. This invention also discloses preparation of compounds of Formula (III) wherein X^1, R^3, R^6, R^7, R^8a, R^8b, and n are as defined in the disclosure.
can be used, among other things, for treating breathing disturbances and snoring, for improving the breathing drive, for treating acute and chronic diseases, diseases triggered by ischemic and/or reperfusion events as well as by proliferative or fibrotic events, for the treatment or prophylaxis of diseases of the central nervous system, lipid metabolism and diabetes, blood clotting and parasitic infection.

[11][21] 165529

[54] MICROORGANISM PROCESSES FOR THE PRODUCTION OF POLYUNSATURATED FATTY ACID (PUFA), OILS OBTAINED FROM SAID PROCESSES AND COMPOSITIONS COMPRISING THEM

[22] 20.06.2003
02258713.3 18.12.2002 EP
03251169.3 26.02.2003 EP

[51] Int. Cl.(2009.01) A23D 09/02, A23K 01/16, A23L 01/30, A61K 31/202, 35/74, A61P 25/00, 43/00, C12P 07/62, 07/64

[74] LUZZATTO & LUZZATTO, INDUSTRIAL PARK, OMER,
P.O.B. 5352,
BEER-SHEVA 84152

The present invention provides a process for the production of a microbial oil comprising culturing a micro-organism in a two stage fermentation process where, in a last stage that precedes the end of fermentation, the carbon source is: consumed by the micro-organisms at a rate greater than it is added to the medium; added at a rate ≤ 0.30

May 31, 2010
M carbon/kg medium; or is rate limiting on the growth of the micro-organism. The micro-organisms thus have the carbon source restricted so that they preferentially metabolise fats or lipids other than arachidonic acid (ARA), so increasing the proportion of ARA in the cells. A microbial oil is then recovered from the micro-organism, using hexane as a solvent, that has at least 50% ARA and at least 90% triglycerides.

The present invention relates to a novel malononitrile compound represented by the formula (I): wherein, \(R_1 \) represents a C1 to C5 (halo)alkyl and the like, \(R_2 \) represents a C1 to C5 (halo)alkyl, \(R_3 \) and \(R_4 \) are the same or different and are a C1 to C6 (halo)alkyl and the like, \(R_5 \) represents a halogen atom and the like, \(n \) is an integer of 0 to 4 and when \(n \) is 2 or more, \(R_5 \) may be the same or different. The malononitrile compound has an efficient pesticidal activity and can control effectively pests such as insect pests, acarine pests, nematode pests and the like.

\[
\begin{align*}
\begin{array}{c}
\text{R}_1 \text{CN-CN-R}_2 \\
\text{R}_3 \text{CN-CN-R}_4
\end{array}
\end{align*}
\]

\(n \)
A sigma delta modulator having an integrator with a first input for coupling to an analog signal and a second input for coupling to a reference voltage. A comparator has a first input coupled to an output of the integrator and a second input coupled to the reference voltage. The comparator produces signal having a logic state in accordance with the relative magnitude of signals at the first and second inputs thereof. The logic state is latched at the comparator output during latching transitions of latching pulses. A one-bit quantizer stores the logic state of at the comparator output at sampling transitions of clock pulses fed to the quantizer. The clock pulses and the latching pulses are synchronized one with the other. Each one of the latching transitions occurs prior to a corresponding one of the sampling transitions.
INTERNAL INSTRUCTION SETS

There is provided a system having: an execution core operable to execute internal instructions; a translation buffer operable to store a plurality of internal instruction blocks of one or more internal instructions, said internal instruction blocks being a dynamic translation of respective external instruction blocks of one or more external instructions; a remapper responsive to an execution request for an external instruction that is within one of said external instruction blocks to identify a corresponding internal instruction block stored within said translation buffer such that one or more internal instructions from said corresponding internal instruction block can be supplied to said execution core.
RNA interference using small interfering RNAs which are specific for the vascular endothelial growth factor (VEGF) gene and the VEGF receptor genes Flt1 and Flk-1/KDR inhibit expression of these genes. Diseases which involve angiogenesis stimulated by overexpression of VEGF, such as diabetic retinopathy, age related macular degeneration and many types of cancer, can be treated by administering the small interfering RNAs.
wherein said bifurcated communicating pipe allows a portion at the end of said cleanser unit to project into said central channel of said communicating pipe for contacting the flush water, to provide cleansing action.
A micro integrated cardiac pacemaker comprising a control unit for outputting a control signal, heart stimulating means for stimulating a heart tissue in response to the control signal, cardiograph information extracting means for extracting cardiograph information and outputting it to the control unit, and a power supply unit for supplying drive power. The control unit outputs a control signal according to cardiograph information. The power supply unit is a biological fuel cell that takes out electrons by oxidation of a biological fuel. The biological fuel cell is characterized in that it comprises an anode and a cathode, an oxidase of a biological fuel and a mediator are immobilized on the cathode, the blood and/or the body fluid are used as an electrolytic solution, and a biological fuel and oxygen in the blood and/or the fluid are used. The biological fuel cell is attached to the end of a catheter and implanted into the heart, and the catheter is withdrawn. It is unnecessary to incise the breast.
Treatment of melanoma is achieved through reduction in the effective amount of clusterin in melanoma cells. Thus, in accordance with one aspect of the invention, there is provided a method for treatment of melanoma in a mammalian subject, preferably a human, comprising the step of administering to the subject a therapeutic agent effective to reduce the effective amount of clusterin in the melanoma cells. The therapeutic agent may be, for example, an antisense ODN or small inhibitory RNA (siRNA) compound targeted to clusterin. The present invention also provides a method for regulating expression of bcl-xL in a subject or cell line comprising administering to the subject or cell line an agent effective to modulate the amount of clusterin expression. In particular, in clusterin expressing cells, the expression of bcl-xL is down-regulated when the effective amount of clusterin is reduced. Such inhibition is significant because bcl-xL is known to act as an inhibitor of apoptosis.

[166680]

DEVICE AND METHOD FOR OPERATING A REFRIGERATION CYCLE WITHOUT EVAPORATOR ICING

May 31, 2010
The present invention relates to a device and method for operating a refrigeration cycle without icing of the evaporative surface (40) of the device using a hot gas bypass system (70, 72, 74) operated by a solenoid (75) controlled by a microprocessor (60).

A hasp assembly comprising:
a first hasp member (12) and a second hasp member (14), said hasp member having mounting provision for attachment to a door (26);
a plug (30) arranged for rotation in one of said hasp members; and
a plurality of locking elements (38) carried inside said first hasp member and adapted to be moved by rotation of said plug into and out of locking engagement with said
second hasp member, wherein said locking elements are adapted to be moved in
different directions by rotation of said plug, wherein the directions are generally
opposite to each other, and
wherein each of said locking elements is connected to said plug by a cam (40), said
cam having a cam face (62) that geometrically locks the locking element when moved
into locking engagement with said second hasp member.
A nozzle assembly for an ink jet printhead, the assembly comprising:
a nozzle chamber 34 formed in a substrate 16;
a nozzle 22 arranged on the substrate to define an opening 24 in fluid communication
with the nozzle chamber, the nozzle being displaceable relative to the substrate for
effecting ink ejection through the opening on demand; and
an actuator 23 arranged on the substrate and connected to the nozzle, the actuator
being arranged externally of the nozzle chamber for control displacement of the
nozzle.
with heat in air and sulfidizing the resultant tungsten trioxide in a carbon disulfide-
containing atmosphere at about 750 °C. The tungsten disulfide powder may also be
formed to have a bimodal particle size distribution of the macro-spherical particles and
smaller, dispersed micro- to submicron-sized fine particles.

[54] SELECTABLE FUNCTIONALITY
COMMUNICATION SYSTEM AND
METHODOLOGIES THEREFOR

A user-interface card for use in the context of an existing call between a voice
communications device and a server, the user-interface card including a plurality of
information modules each operative to actuate an application on the server, a user
selectable transmitter for transmitting a selected one of the plurality of information
modules to the server, via the voice communications device, in response to application
specific actuation of the card by a user and an audio transducer driven by the
transmitter for transmitting the selected one of the plurality of information modules to
the voice communications device as sound.

May 31, 2010
A roof structure (1) providing protection of buildings against kinetic impact and explosion of ballistic missiles, comprising:

- an upper steel plate 2 3-10 mm thick;
- a lower steel plate 3 5-20 mm thick;
- a mid-layer (4) comprising elongate 2-5 mm thick steel ribs connecting the upper and the lower plates, each rib having a length corresponding essentially to a length of the upper and the lower plates and the ribs being spaced from each other along the upper and the lower plates; and
- support structures (5) for supporting the lower plate at a spacing from a pre-existing roof surface (6);

said roof structure adapted to be deformed but not penetrated by impact of ballistic missiles.
An improved element for forming ground covering, restraining and reinforcing structures, comprising a lower wall (L), an upper wall (U) and a front wall (F) connected in an articulated manner, at one of its end edges (3, 4) at least, to an edge of the lower wall (L) or the upper wall (U).
A rate adaptive transmission scheme for MIMO systems, which can transmit a variable number of data symbol streams, provide transmit diversity for each data symbol stream, and fully utilize the total transmit power of the system and the full power of each antenna. In one method, at least one data symbol stream is received for transmission from a plurality of antennas. Each data symbol stream is scaled with a respective weight corresponding to the amount of transmit power allocated to that stream. The scaled data symbol stream(s) are multiplied with a transmit basis matrix to provide a plurality of transmit symbol streams for the plurality of antennas. The transmit basis matrix (e.g., a Walsh-Hadamard matrix or a DFT matrix) is defined such that each data symbol stream is transmitted from all antennas and each transmit symbol stream is transmitted at (or near) the full power for the associated antenna.
Position determination accuracy of a wireless communication device may be negatively affected by a large unaccounted GPS doppler bias, which in turn may affect GPS doppler estimations and GPS doppler measurements conducted by the wireless communication device. The quality of GPS doppler measurements is very important for position location, because poor quality GPS doppler measurements may prevent the wireless communication device from acquiring satellites in the most sensitive modes with narrow frequency ranges, which results in reduced GPS pseudorange measurement yield. Large unaccounted GPS doppler bias also adversely affects position accuracy because of the adverse effect on the GPS code phase measurements time propagation to common time prior to their use in position location calculation. The same is true in the case of unaccounted CDMA code doppler, through the adverse effect on the AFLT code phase measurements time propagation to common time prior to their use in a position location engine. This effect is the biggest concern in the case of large search windows. Therefore, the present disclosure provides a method of optimizing GPS based position location in the presence of time-varying frequency error, including the steps of continuously measuring and/or calculating resulting GPS doppler bias and CDMA code doppler bias and then minimizing their adverse effects with regard to position location determination by re-centering GPS doppler search windows based on the GPS doppler bias value, as well as using GPS doppler bias and CDMA code doppler bias value to properly propagate GPS pseudorange and AFLT pilot phase measurements, respectively, to common time prior to their use in a position location engine.
A meter register (20), comprising:
A sealed register boy (12) having a face portion and a body defining an internal cavity;
a rotatable follower magnetic member provided in said internal cavity, said follower magnetic member adapted to be rotated by a driving magnetic member external of said sealed meter register, said follower magnetic member provided within said internal cavity;
an antenna (74) provided within said internal cavity, and a visual display provided within said internal cavity and visible through said face portion; and
a microprocessor (72) coacting with said antenna, wherein said rotatable member coacts with said microprocessor to determine a volume of flow and/or a flow rate through a meter and wherein said antenna is adapted to transmit a signal identifying
the flow rate and/or the volume of flow measured by said register, and wherein said visual display displays a volume of flow measured by the register that corresponds to a number of rotation of said rotatable member.

VIRTUAL TO PHYSICAL MEMORY ADDRESS MAPPING WITHIN A SYSTEM HAVING A SECURE DOMAIN AND A NON-SECURE DOMAIN

There is provided apparatus for processing data, said apparatus comprising: a processor operable in a plurality of modes and either a secure domain or a non-secure domain including: at least one secure mode being a mode in said secure domain; and at least one non-secure mode being a mode in said non-secure domain; wherein when said processor is executing a program in a secure mode said program has access to secure data which is not accessible when said processor is operating in a non-secure mode; said processor includes a non-secure translation table base address register operable in said non-secure domain to indicate a region of memory storing non-secure domain memory mapping data defining how virtual addresses are translated to physical addresses within said non-secure domain; and said processor includes a secure translation table base address register operable in said secure domain to indicate a region of memory storing secure domain memory mapping data defining how virtual addresses are translated to physical addresses within said secure domain.
A method for reducing wafer damage during an etching process is provided. In one of the many embodiments, the method includes assigning a bias voltage to each of at least one etching process, and generating the assigned bias voltage before initiation of one of the at least one etching process. The method further includes applying the assigned bias voltage to an electrostatic chuck before initiation of one of the at least one etching processes. The assigned bias voltage level reduces wafer arcing.
A process for designing and manufacturing precision-folded, high strength, fatigue-resistant structures and a sheet therefore. The techniques include methods for precision bending of a sheet of material (41, 241, 341, 441, 541) along a bend line (45, 245, 345, 445, 543) and a sheet of material formed with bending strap-defining structures, such as slits or grooves (43, 243, 343, 443, 542), are disclosed. Methods include steps of designing and then separately forming longitudinally extending slits or grooves (43, 243, 343, 443, 542) through the sheet of material in axially spaced relation to produce precise bending of the sheet (41, 241, 341, 441, 541) when bent along the bend line (45, 245, 345, 445, 543).
A sustained-release composition for oral administration of a drug, comprising the drug, a mixture of sodium alginate and xanthan gum as a carrier for sustained release and a mixture of hydroxypropyl methylcellulose and propylene glycol alginate as a gel hydration accelerator, which is capable of maintaining a constant drug level in blood for 24 hours or more owing to the fact that the drug release rate follows zero order kinetics and does not significantly vary with the degree of gastrointestinal motility due to rapid gel hydration without forming a non-gelated core.
The invention concerns heparin-derived polysaccharide mixtures having an average molecular weight of 1500 to 3000 daltons and an anti-Xa/anti-IIa ratio higher than 30, their preparation method and pharmaceutical compositions containing same.

The invention relates to a method for extracting an extract, which contains the natural mixture of conjugated equine estrogens, by the liquid-liquid extraction of the mixture of conjugated equine estrogens. The extracted mixture is depleted of non-conjugated lipophilic compounds from the group consisting of non-conjugated flavonoids, non-conjugated isoflavonoids, non-conjugated norisoprenoids, non-conjugated steroids, particularly androstane and pregnane steroids, and comparable non-conjugated compounds.

3 - PHENYL SUBSTITUTED

316

May 31, 2010
The invention concerns compounds having an anticancer activity, of formula (I) wherein: \(R_1 \) represents a hydrogen atom, a \((C_1-C_4)\)alkyl group or a \((CH_2)_n-\)O-tetrahydropyran-2-yl, \((CH_3)_2NR'_6R'_7\), \((CH_2)_2CN\), \((CH_2)_2CO_2(C_1-C_4)Alk\) or \((CH_2)_2CONR'_6R'_7\) group; \(R_2 \) represents a hydrogen atom or a \((C_1-C_4)\)alkyl group; or \(R_1 \) and \(R_2 \) together form a \((CH_2)_3\) group; \(R_3 \) represents a phenyl monosubstituted by a hydroxyl, hydroxymethyl, carboxy, \((C_1-C_4)\)alkanly, azido, \((C_1-C_4)\)alkoxy carbonyl, hydroxyiminomethyl, \((C_1-C_4)\)alkylsulphonil, trifluoromethyl, thiol, \((C_1-C_4)\)alkylthio, cyano group or by a \((CH_2)_nNR'_6R'_7\), \(CONR'_6R'_7\) or \(O(CH_2)_nR'_9\) group; a phenyl substituted by 2 to 5 identical or different substituents selected among a halogen atom, a \((C_1-C_4)\)alkyl, trifluoromethyl, hydroxyl, hydroxymethyl, \((C_1-C_4)\)alkoxy, carboxy, \((C_1-C_4)\)alkanly, azido, \((C_1-C_4)\)alkoxy carbonyl, hydroxyiminomethyl, \((C_1-C_4)\)alkylsulphonil, a phenyl, cyano group or by a \((CH_2)_nNR'_6R'_7\), \(CONR'_6R'_7\) or \(O(CH_2)_nR'_9\) group; or \(R_3 \) represents a benzodioxolyl group unsubstituted or substituted on the phenyl by a halogen atom; \(R_4 \) and \(R_5 \), identical or different, represent each independently a hydrogen or halogen or a hydroxyl, \((C_1-C_4)\)alkyl, trifluoromethyl, phenyl, cyano, \((C_1-C_4)\)alkoxy, \((C_1-C_4)\)alkoxycarbonyl, \((C_1-C_4)\)alkylsulphonyl group or a \(O(CH_2)_nNR'_6R'_7\) or \((CH_2)_nNR'_6R'_7\) group.
PREPARATION OF IMIDAZOLYL COMPOUNDS

The present invention relates to a method for the preparation of an imidazolyl compound of the general formula (I), wherein: Rₐ and Rₐ each separately are (C₁-C₆)alkyl, (C₁-C₆)alkoxyalkyl, optionally substituted aryl or heteroaryl; or wherein Rₐ and Rₐ together form a further homocyclic or heterocyclic system comprising one or more rings; Rₐ and Rₐ each are hydrogen or together form a carbon-carbon double bond, said carbon-carbon double bond optionally being part of an aromatic system; Rₐ is hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkoxyalkyl or halogen; Rₐ is hydrogen or (C₁-C₄)alkyl; Rₐ is hydrogen or (C₁-C₄)alkyl; m is 1 or 2; and R₁, is hydrogen or (C₁-C₄)alkyl; as well as its acid addition salt; characterized in that a compound of the general formula (II) is reacted with a compound of the formula (III), wherein: R is a hydrogen, a (C₁-C₄)alkyl group optionally substituted with a hydroxy group or an optionally substituted aryl group, R’, R', R” and R”’ each individually are a hydrogen or a (C₁-C₆)alkyl group; followed by a reaction with a compound of the formula (IV), wherein R₁, R₂ and R₃ have the meanings defined above; and optionally followed by a reaction with a suitable acid. The method according to the present invention is especially useful for the preparation of ondansetron and cilansetron.
The invention provides compounds of the Formula (I) and pharmaceutically acceptable salts or prodrugs thereof, wherein Y, Z, R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, m, n, p and q are as defined herein. The invention also provides methods for preparing, compositions comprising, and methods for using compounds of Formula (I).
An integrated circuit includes a plurality of processing stages each including processing logic (1014), a non-delayed signal-capture element (1016), a delayed signal-capture element (1018) and a comparator (1024). The non-delayed signal-capture element (1016) captures an output from the processing logic (1014) at a non-delayed capture time. At a later delayed capture time, the delayed signal-capture element (1018) also captures a value from the processing logic (1014). An error detection circuit (1026) and error correction circuit (1028) detect and correct random errors in the delayed value and supplies an error-checked delayed value to the comparator (1024). The comparator (1024) compares the error-checked delayed value and the non-delayed value and if they are not equal this indicates that the non-delayed value was captured too soon and should be replaced by the error-checked delayed value. The non-delayed value is passed to the subsequent processing stage immediately following its capture and accordingly error recovery mechanisms are used to suppress the erroneous processing which has occurred by the subsequent processing stages, such as gating the clock and allowing the correct signal values to propagate through the subsequent processing logic before restarting the clock. The operating parameters of the integrated circuit, such as the clock frequency, the operating voltage, the body biased voltage, temperature and the like are adjusted so as to maintain a finite non-zero error rate in a manner that increases overall performance.
ANALOGS AND
PHARMACEUTICAL
COMPOSITIONS CONTAINING
THE SAME

[22] 19.11.2003
[51] Int. Cl.(2009.01) A61K 31/7125, C07H 21/00, C12N 15/11
[71] DAIICHI SANKYO COMPANY
LIMITED, JAPAN
[87] WO/2004/046161
[74] WOLFF, BREGMAN AND GOLLER,
P.O.B. 1352,
Jerusalem 91013

Analogues represented by the general formula (1) and pharmacologically acceptable
salts thereof: (1) wherein m is 0 or 1; n is 0 to 2; R¹ is optionally substituted C₆⁻
alkoxy, mercapto, mercapto blocked with a protecting group for synthesis of nucleic
acid, or optionally substituted C₄⁻ alkylthio; R₂, R₃, R₄, R₅ and R₆ are each hydroxyl,
hydroxyl blocked with a protecting group for synthesis of nucleic acid, optionally
substituted C₄⁻ alkoxy, mercapto, mercapto blocked with a protecting group for
synthesis of nucleic acid, or optionally substituted C₄⁻ alkylthio; R₇ is oxygen or -
O(CH₂CH₂O)ₚ (wherein q is 2 to 6); R₈ is hydrogen, optionally substituted C₆⁻ alkyl,
or a 5'-phosphorylated oligonucleotide analogue lacking one hydroxyl group on the 5'-
phosphate group; and E¹, E², E³ and E⁴ are each a natural or modified nucleic acid unit.

[11][21] 168562

METHOD AND APPARATUS FOR
TRANSFERRING INFORMATION
TO A REMOTE CONTROL

[22] 10.11.2003
[51] Int. Cl.(2009.01) G08C 19/16, 19/28
[71] ICX GLOBAL, INC., U.S.A.
[87] WO/2004/047386
[74] SANFORD T.COLB & CO.,
Snipred.m. Kolel Sheva,
May 31, 2010
A method for transferring information to a remote control includes storing information in a transfer medium, inserting the transfer medium into a remote control that may or may not have already been programmed with information of the same type as that in the transfer medium, inputting the information from the transfer medium, and storing the information from the transfer medium in memory. Another embodiment of the method transfers information between remote controls. A remote control includes a processor, memory, and a transfer medium port. The processor is responsive to a data signal and the port is adapted to receive a transfer medium with information to be transferred to the remote control. The processor stores the information in memory. The remote control may also download information which is to be transferred to other remote controls into the transfer medium and the transfer medium may be reused to program additional remote controls.
A passive Q-switch (108) for a laser system (100), and a method for its production. The laser (100) is operative at near infrared wavelength region, including the eye-safe region. The Q-switch (108) includes a saturable absorber based on IV VI semiconductor nanocrystals (NCs), embedded in a polymer matrix. The NCs preferably include lead selenide or lead sulfide. The NCs may be surface passivated, and may feature a PbSe/PbS core-shell configuration.

METHOD AND APPARATUS FOR DETERMINING A SET OF ACCEPTABLE TRANSPORT FORMAT COMBINATIONS
A system and method for automatically and uniquely assigning identification codes to a plurality of slave processors: A master processor having communication port is linked to a first slave processor, which, itself, has first and second communication ports. The first communication port is used in support of the aforementioned link to the computer. A second slave processor, also having first and second serial ports, is linked by its first communication port to the second communication port of the first slave processor. The slave processors are programmed to read designated pins on their first communication ports. The read values determine the identification code of each processor. Thereafter, each slave processor outputs to its second port a value one greater than the value read from its first port. Therefore, each slave processor assigns itself a particular identification code and directs the next slave processor to assign itself an identification code one greater.
IMIDAZOLE DERIVATIVES HAVING AFFINITY FOR ALPHA 2 RECEPTOR ACTIVITY

The present invention relates to novel prodrugs of MPV-2426, to methods for preparing said prodrug forms, to pharmaceutical compositions containing such prodrug forms, and to methods for using the prodrug forms. A compound of general formula (I), or pharmaceutically acceptable salts or hydrates thereof, wherein R represents unsubstituted or substituted lower alkyl, unsubstituted or substituted aryl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted heteroaryl, unsubstituted or substituted lower alkylamino or a saturated five or six membered heterocyclic group containing one or two nitrogen atoms.

ERROR DETECTION AND RECOVERY WITHIN PROCESSING STAGES OF AN INTEGRATED CIRCUIT

A compound of general formula (I), or pharmaceutically acceptable salts or hydrates thereof, wherein R represents unsubstituted or substituted lower alkyl, unsubstituted or substituted aryl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted heteroaryl, unsubstituted or substituted lower alkylamino or a saturated five or six membered heterocyclic group containing one or two nitrogen atoms.
An integrated circuit includes a plurality of processing stages each including processing logic (2), a non-delayed latch (4), a delayed latch (8) and a comparator (6). The non-delayed latch (4) captures an output from the processing logic (2) at a non-delayed capture time. At a later delayed capture time, the delayed latch (8) also captures a value from the processing logic (2). The comparator (6) compares these values and if they are not equal this indicates that the non-delayed value was captured too soon and should be replaced by the delayed value. The non-delayed value is passed to the subsequent processing stage immediately following its capture and accordingly error recovery mechanisms are used to suppress the erroneous processing which has occurred by the subsequent processing stages, such as gating the clock and allowing the correct signal values to propagate through the subsequent processing logic before restarting the clock. The operating parameters of the integrated circuit, such as the clock frequency, the operating voltage, the body biased voltage, temperature and the like are adjusted so as to maintain a finite non-zero error rate in a manner that increases overall performance.
[57] A process for the preparation of substituted halogenated anilines from substituted halogenated 1-chlorobenzenes which comprises (a) reacting a substituted halogenated 1-chlorobenzene selectively with an imine in the presence of a transition metal catalyst complex and a base to form an N-aryl imine; (b) hydrolyzing the N-aryl imine; and (c) isolating the substituted halogenated aniline.

[54] TECHNIQUE FOR CONVERTING BIT RATES

[22] 08.06.2005
[51] Int. Cl.(2009.01) H04J 03/06, 03/07, H04L 25/05
[61] 150011
[71] ECI TELECOM LTD.
[72] AMIHAI VICKS, JACOB RUTHSTEIN, LEV LITINSKY
[74] ECI TELECOM LTD.,
30 HASIVIM ST.,
PETACH TIKVA 49517

[57] A binary tree-like structure for converting bit rates in a telecommunication system and comprising at least one cyclic generator (CG), wherein each particular CG is adapted to present a higher bit rate called R1 substantially as a sum of two lower bit rates called R2 and R3 by cyclically producing, per n clocks of the bit rate R1, m first type signals as clocks of the bit rate R2 and (n-m) second type signals as clocks of the bit rate R3, where m and n are parameters of said CG and integers, m<n;
so that said two lower bit rates R2 and R3 are presented as follows, based on its parameters m and n: R2=mR1/n, R3=(n-m)R1/n;
and wherein the higher bit rate R1 of a particular CG is either obtained from outside of said structure or constitutes a lower bit rate of another, upper range GC of the structure, while each of the lower bit rates R2 or R3 of a particular CG is either dispatched away from the structure or constitutes a higher bit rate of another, lower range CG of the structure.
Provided herein are methods for producing alphavirus replicon particles in high yield; replicon RNAs are electroporated into permissive cells, where the cells are at a relatively high density, together with at least one helper nucleic acid providing the necessary functions for packaging. After a growth period in appropriate medium, alphavirus replicon particles are harvested from the surfaces of the cells in which they were produced using a salt wash in which the salt concentration is from about 0.2 to about 5 M sodium chloride, calcium chloride, magnesium chloride, potassium chloride, ammonium acetate, ammonium bicarbonate, among others. After dilution, if necessary, the particles can be purified by a suitable chromatographic technique.
There is provided a memory for storing data comprising: a fast data reading mechanism operable to read a data value from said memory to generate a fast read result that is output from said memory for further processing; a slow data reading mechanism operable to read said data value from said memory to generate a slow read result available after said fast read result has been output for further processing, said slow data reading mechanism being less prone to error in reading said data value than said fast data reading mechanism; a comparator operable to compare said fast read result and said slow read result to detect if said fast read result differs from said slow read result; and error repair logic operable if said comparator detects that said fast read result differs from said slow read result to suppress said further processing using said fast read result, to output said slow read result in place of said fast read result and to restart said further processing based upon said slow read result.

[11][21] 169235

AFFILIATING ENDPOINTS AND DETERMINING COMMON COMMUNICATION CAPABILITIES

18.12.2003
Int. Cl.(2009.01) H04L 29/06, 29/08
MOTOROLA, INC., U.S.A.
WO/2004/062173
REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

In a communications system having a plurality of endpoints each including a logical entity and its physical counterpart, a method of group affiliation, the method including the steps of: receiving a first message from a requestor via application layer routing that includes an affiliation request (602); generating a response to the affiliation

May 31, 2010
request as a function of the type of affiliation request received (604); and communicating the response to the affiliation request to the requestor via application layer routing (606).

[11][21] 169270

[54] DEVICE AND METHOD FOR DELIVERY OF LONG WAVELENGTH LASER ENERGY TO A TISSUE SITE

[51] Int. Cl.(2009.01) A61B 18/22, G02B 06/10
[71] TRIMEDYNE, INC., U.S.A.
[87] WO/2004/058328
[74] SANFORD T.COLB & CO.,
P.O.B. 2273,
REHOVOT 76122

A laser energy delivery device is provided that is suitable for irradiating a body tissue with relatively long wavelength laser energy in the presence of an aqueous liquid without significant absorption of the laser energy by the liquid. The device includes an elongate hollow sheath that has an open aperture at its distal end portion and closed at its proximal end, a laser energy conduit such as an optical fiber or hollow wave guide, within the sheath, the distal end of the conduit being disposed near the open aperture at the distal end portion of the sheath, and the proximal end of the conduit being adapted for connection to a source of long wavelength laser energy. The sheath also includes an inlet port, spaced from the proximal end of the sheath, and adapted to receive and deliver a biologically compatible gas through the sheath to a body tissue site in contact with the open distal end of the sheath. In use, the open aperture at the distal end portion of the sheath is positioned in contact with a body tissue site. Gas, such as carbon dioxide, infused through the sheath displaces an aqueous liquid from the region.
between the distal end portion of the sheath and the tissue. Laser energy emitted from the distal end portion of the conduit passes through the substantially liquid-free region at the distal end of the sheath and impinges on the tissue to be irradiated. The laser energy can be used to ablate, vaporize, coagulate or shrink tissue at the target zone without interference from aqueous liquids, which tend to absorb relatively large amounts of long wavelength laser energy and reduce the efficiency of tissue ablation.

[57] The present invention relates to a process for preparation of amino substituted benzothiazole derivatives of formula (I), wherein R₁, R² and R³ are independently from each other hydrogen, lower alkyl, lower alkoxy or halogen; R⁴ is hydrogen, lower alkyl, lower alkoxy, halogen, or is a five or six membered non aromatic heterocyclyl group, unsubstituted or substituted by lower alkyl or an oxo-group, or is -NR⁵R⁶ where R⁵ and R⁶ are independently from each other hydrogen, lower alkyl, -C(O)-lower alkyl, -(CH₂)nO-lower alkyl or benzyl, optionally substituted by lower alkyl, or is an five or six membered heteroaryl group; R¹ and R² or R² and R³ may form together with the corresponding carbon atoms a ring containing -O-CH₂-O- or -CH=CH-CH=CH-; R is hydrogen or -C(O)R’; R’ is a five or six membered non aromatic heterocyclyl group, five or six membered heteroaryl group or is aryl, which rings may
be substituted by the groups, selected from lower alkyl, halogen-lower alkyl, lower alkoxy, cyano, nitro, -C(O)H, -C(O)OH or by pyrrolidin-1-yl-methyl; n is 1 to 4; and to their pharmaceutically acceptable salts, wherein the cyclization is carried out by the treatment of a compound of formula with sulfoxide/HBr/solvent to give the desired products of formula (I) for R is hydrogen (formula IA) and for R is -C(O)R’ (formula IB).

[SYSTEM AND METHOD FOR DELIVERING MESSAGES USING ALTERNATE MODES OF COMMUNICATION]

There is provided a novel system and method for delivering messages using alternate modes of communication when a primary mode of communication is not available as may happen in emergency circumstances such as those that arise during a terrorist attack causing damage to communications infrastructure.
POURER

05.01.2004

102297

02.01.2003

NL

Int. Cl.(2009.01) B65D 23/06, B67D 01/16

VACU VIN INNOVATIONS LTD., UNITED KINGDOM

ARNOLDUS WILLEM ZWEEKHORST, PATRICK LAMBERTUS KERKHOF, EELCO JAN GERARDUS WITTEVEEN

WO/2004/060752

GLUCKSMAN - LOWY, 10A ELHANAN ST.,
P.O.B. 6202,
HAIFA 31061

Pou rer (1) consisting of an elongated, tubular part of plastic material. This part of plastic material is made resilient and has an external diameter greater than that of the associated bottles. The tubular part is provided with a split (6), as a result of which the diameter can be reduced to some extent and the pourer can be accommodated with a clamping action in a bottle (10). This clamping can be even further promoted by providing ribs (4). The pourer is provided with a search point (5) to facilitate introduction into a bottle and the pouring end (2) is flared.
STEREOSCOPIC DISPLAY APPARATUS PARTICULARLY USEFUL WITH LCD PROJECTORS

[22] 07.04.2003
60/442903 [33] US

[54] Stereoscopic display apparatus, includes two projectors (Projector 1, 2) having inputs connectable to a source of digital data (Eye 1, Eye 2 Image Source) representing the color components of two stereoscopic images, and outputs outputting two optical beams each having a set of color components (R, B, G) of different polarization states (alpha, beta); a polarization preserving screen; an optical filter system (Polarization Transformer) using exclusively optical retarders for transforming the polarizations of the optical beams outputted by the two projectors into two color sets, in which all the color components of one set are polarized in one polarization state (gamma), and all the color components of the other set are polarized in an orthogonal polarization state (delta); and means for stacking the two color sets onto the polarization preserving screen, such as to enable stereoscopic viewing of the two color sets via orthogonally polarized filters (gamma, delta Polarization Filter).

COCRYSTALS OF ACTIVE AGENT AND GUEST

[22] 21.01.2004
60/441557 [33] US

[54] Cocrysal of an active agent and a guest compound:

- A source of digital data (Eye 1, Eye 2 Image Source) representing the color components of two stereoscopic images.
- Two projectors (Projector 1, 2) outputting optical beams with different polarization states.
- Polarization preserving screen.
- Optical filter system (Polarization Transformer) using optical retarders for transforming the polarizations of the beams.
- Means for stacking the two color sets onto the screen for stereoscopic viewing.

[21] 169556

The present disclosure relates to novel cocrystals and novel methods for cocrystallization. In particular, the disclosure includes cocrystals comprising a salt of an active agent, such as a chloride salt of an active pharmaceutical ingredient. The present disclosure also relates to methods of preparing cocrystals and methods for screening for solid state phases.

[54] SAFETY SYSTEM FOR THE IGNITION CHAIN OF A PROJECTILE FUZE

A small arms projectile for a small arms weapon, which projectile comprises a warhead (116) having an explosive charge (not shown), an initiator (102), and a firing pin (not shown). The initiator has safe and armed conditions and is capable of detonating the explosive charge of the warhead when the initiator is in the armed condition and impacted with sufficient force by the firing pin. The projectile further
comprises shielding means (106) positioned between the initiator and the explosive charge of the warhead, which shielding means is slidable from a safety position in which the shielding means shields the explosive charge of the warhead from the initiator, to an armed position in which the initiator is capable of detonating the explosive charge of the warhead. The shielding means is slidable from the safe to the armed position in response to the initiator moving from the safe to the armed condition.

METHOD OF DISPLAYING CARTOGRAPHIC INFORMATION AND AERONAUTICAL ZONES ON AN AIRCRAFT SCREEN

The field of the invention is that of methods of synthesizing cartographic images presented on display devices. This method is applied more specifically to visual flight on rotary-wing aircraft. The method according to the invention is used to present the useful aeronautical map information superimposed on a conventional altimetric presentation of the terrain being flown over, while retaining a legibility that is acceptable to the user. Flight safety is thus significantly reinforced. To obtain an enhanced legibility, the method displays only the aeronautical zones included in an altitude band corresponding to the flight phase of the aircraft and dependent on the geographic location and the vertical position of the aircraft. The method is used to display the cartographic representation either on a single window comprising a plan view of the terrain being flown over, or on two windows respectively representing a plan view and a crosssectional view of the terrain being flown over.
[54] MEDICAMENT FOR TREATMENT OF NEUROTIC DISORDERS

07.07.2000
PA19990991 [32] 08.07.1999 [33] DK
Int. Cl.(2009.01) A61K 31/343, C07D 307/87
DIVISION FROM 146131
H. LUNDBECK A/S, DENMARK
WO/2001/003694
DR. SHLOMO COHEN & CO.,
124 IBN GABIROL ST.,
P.O.B. 11490,
TEL AVIV 62038

Use of escitalopram or a pharmaceutically acceptable salt thereof as the sole active ingredient for the preparation of a medicament useful in the treatment of social anxiety disorder.

[54] USE OF LUPIN CONGLUTIN FOR THE PREPARATION OF A MEDICAMENT FOR THE TREATMENT OF TYPE II DIABETES

06.02.2004
Int. Cl.(2009.01) A61K 36/23, 36/48
INDENA S.P.A., ITALY
WO/2004/071521
REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

Use of lupin conglutin for the preparation of a medicament for the treatment of type II diabetes.

May 31, 2010
The present invention discloses the use of lupin conglutin gamma or of proteins showing homology higher than 50% with lupin conglutin gamma, for the preparation of a medicament, food supplements or foods for the treatment of type II diabetes, pharmaceutical and nutritional compositions containing lupin conglutin gamma, and the use of lupin conglutin gamma as therapeutical agent, in particular as hypoglycemicizing agent. Lupin conglutin gamma may be used in pure form or in form of extracts, mixtures or concentrate.
therein. The sealing member can be easily by using the cutting region without touching it by hand, and thus, a content of a container can be hygienically taken. In addition, content separately stored in the container and in the closure can be simply mixed for use.

UV STABLE TRANSDERMAL THERAPEUTIC PLASTER

[54] UV STABLE TRANSDERMAL THERAPEUTIC PLASTER

[22] 04.02.2004

The invention relates to a UV stable transdermal therapeutic system (TTS) consisting of a back layer, at least one matrix containing an active substance and, optionally, a withdrawal film and an UV-radiation absorber. An adhesive layer containing said UV-radiation absorber is arranged between the back layer and the matrix containing an active substance which is distant as much as possible from a surface, a separation layer is arranged between the adhesive layer containing said UV-radiation absorber and the matrix containing an active substance, which is as remote as possible from the surface which is impermeable to the active substance and UV radiation absorber. The inventive transdermal therapeutic system exhibits a high stability and is devoid of inconveniences of existing TTS containing a light-sensitive substance.
The invention relates to vaccine compositions which combine gangliosides and the N. meningitidis outer membrane protein complex (OMPC) in order to form very small size proteoliposomes (VSSP) which are intended for subcutaneous administration. The inventive compositions do not require the use of additional adjuvants. Said compositions enable immunological treatments with gangliosides, particularly N-AcGM3/VSSP and N-GcGM3/VSSP, which are advantageous owing to the fact that they are less aggressive at the point of injection and can be used more easily with less discomfort for patients.
The present invention provides membrane cassettes and stacks thereof which are suitable for a use in a variety of electrochemical applications. The invention further provides membrane cassettes which comprise one or more external manifolds which deliver reagents and/or coolant to one or more reactant or coolant flow fields of the membrane cassettes. In certain preferred embodiments, the invention provides cassettes and stacks which are suitable for use in fuel cell applications.

Identity card that can be used, for example, in a travel document or as a separate card. This identity card consists of at least two core layers (6, 7), preferably of polycarbonate material, that are fused to one another. In each of the core layers there is a recess (12, 13), each of a different size. On assembly these recesses become situated on top of one another and a semiconductor chip (14) is accommodated in the larger recess formed as a result. There is a covering layer (8) fused to at least one of the core layers (6), whilst a layer that can be written on by laser has also been applied. There can be (semi-)transparent windows on top of one another in the core layer and if the covering layer is transparent light can be transmitted, it being possible to apply a specific pattern in the windows.
The present invention relates to pharmaceutical compositions, formulated for injectable administration, which comprises a testosterone ester, in particularly testosterone undecanoate, in a vehicle comprising castor oil and a co-solvent. Upon injecting the compositions according to a particular administration scheme, reliable levels of testosterone in serum in the normal physiological range is achieved for a long period. This allows for the use of the compositions in hormone replacement therapy and male contraception without concomitant monitoring of testosterone levels in serum by a physician.
Drive mechanism for use in a drug delivery device comprising: a housing having a helical thread, preferably an internal helical thread; a dose dial sleeve (70) having a helical thread engaged with the helical thread of the said housing; a drive sleeve (30) releasably connected to the said dose dial sleeve (70); and a clutch means (60) located between the dose dial sleeve (70) and the drive sleeve (30); When the dose dial sleeve (70) and the drive sleeve (30) are coupled, both are allowed to rotate with respect to the housing. When the dose dial sleeve (70) and the drive sleeve (30) are de-coupled, rotation of the dose dial sleeve (70) with respect to the housing is allowed, whilst rotation of the drive sleeve (30) with respect to the housing is not allowed, whereby axial movement of the drive sleeve (30) is allowed so that a force is transferred in the longitudinal direction to the proximal end of the drug delivery device.
This invention relates to a method for generating pollution credits while processing molten magnesium, aluminum, lithium, and alloys of such metals by contacting the molten metal or alloy with a gaseous mixture comprising a fluorocarbon selected from the group consisting of perfluoroketones, hydrofluoroketones, and mixtures thereof.

[57]

This invention relates to a method for preventing the ignition of molten reactive metal by contacting the molten metal with a gaseous mixture comprising a fluorocarbon selected from the group consisting of perfluoroketones, hydrofluoroketones, and mixtures thereof.

[57]

This invention relates to a method for treating diabetic nephropathy with pyridylsulfonamido pyrimidines.
The present invention relates to the use of a compound of formula (I) wherein R₁ is pyridyl or thiazolyl, any of which may optionally be substituted with C₁₋₈ alkyl or C₂₋₈ alkenyl; and (a) R₂ is methoxy and n is zero or one; or (b) R₂ is chlorine and n is zero and pharmaceutically acceptable salts thereof for lowering or controlling proteinuria, in particular for the treatment of diabetic nephropathy.
receiving a patterned semiconductor substrate (100). The patterned semiconductor
substrate includes a conductive interconnect material (120) filling multiple of features
(102, 104, 106) in the pattern. The conductive interconnect material having an
overburden portion (112). The overburden portion (112) includes a localized non-
uniformity (indicated in variations 114, 116, 118). An additional layer (202) is formed
an the overburden portion. The additional layer and the overburden portion are
planarized. The planarizing process substantially entirely removes the additional layer.

MICROWAVE METHOD FOR PREPARING RADIOLABELLED GALLIUM COMPLEXES

[54] GB 3308408.4
[51] Int. Cl.(2009.01) A61K 103/34, 51/08
[71] GE HEALTHCARE LIMITED, UNITED KINGDOM
[87] WO/2004/089425

[57] The present invention relates to a method of producing radiolabelled gallium complexes that could be used as diagnostic agents, e.g. for positron emission tomography (PET) imaging.
CONDUCTIVE POLYMER JACKET FOR CORRUGATED TUBING

A tubing assembly including conductive corrugated tubing including convolutions of peaks and valleys and a conductive polymer jacket disposed in said valleys along a length of said corrugated tubing.

COMPACT, LOW-POWER LOW-JITTER DIGITAL PHASE-LOCKED LOOP

A digital PLL includes an adaptive PFD, an adaptive loop filter, an iDAC, an ICO, and a divider. The adaptive PFD receives a reference signal and a feedback signal, determines phase error between the two signals, and provides a PFD value for each.
phase comparison period. The magnitude of the PFD value is adjusted to achieve fast frequency acquisition and reduced jitter. The adaptive loop filter updates its output whenever a PFD value is received, widens the PLL loop bandwidth if a large phase error is detected, and narrows the loop bandwidth if a small average phase error is detected. The iDAC, which can be implemented with both steered and single-ended current sources, converts the loop filter output into analog current. The ICO provides an oscillator signal having a phase determined by the iDAC output. The divider divides the oscillator signal by a factor of N and provides the feedback signal.

[54] COATED CUTTING TOOL INSERT

The present invention discloses coated milling inserts particularly useful for milling of grey cast iron with or without cast skin under dry conditions at preferably rather high cutting speeds and milling of nodular cast iron and compacted graphite iron with or without cast skin under dry conditions at rather high cutting speeds. The inserts are characterized by a WC-Co cemented carbide with a low content of cubic carbides and a highly W-alloyed binder phase and a coating including an inner layer of TiCₓNᵧ with columnar grains followed by a wet blasted layer of α-Al₂O₃.

[54] POLYMORPHS OF OLANZAPINE HYDROCHLORIDE

The present invention discloses the preparation of olanzapine hydrochloride polymorphs.

May 31, 2010
The present invention relates to new crystalline forms I, II and III of 2-methyl-4-(4-methylpiperazin-l-yl)-10H-thieno[2,3-b][1,5]-benzodiazepine hydrochloride, a process for the preparation thereof and pharmaceutical compositions containing the same. Said new polymorphic forms are useful as active ingredients for the treatment of psychotic conditions.

The invention provides processes for culturing cells derived from embryonic retinoblast cells immortalized by adenovirus E1 sequences, preferably PER.C6™ cells, to improve product yields from such cells. Feed strategies for such cells and cultures with very high cell densities are provided, resulting in high yields of products, such as recombinant antibodies.
There is disclosed a knitted transducer device (10) comprising a knitted structure having at least one transduction zone, in which the transduction zone is knitted with electrically conductive fibres so that deformation of the knitted structure results in a variation of an electrical property of the transduction zone. Disclosed is also a garment such a unitted transducer.
A sensor for a security system is disclosed to detect intrusions at one or more predetermined locations wherein each location includes a moveable member (16) which must be moved in order to intrude the location. The system includes a fiber network (14) routed in close proximity to one or more locations. The sensor (24) comprises a sensor housing for being disposed at a location to detect a predetermined movement of the moveable member from a secure position to an unsecured position, and means for mounting the sensor housing in a stationary position at the location without a physical connection to the moveable member (16). The sensor housing includes a fiber inlet and a fiber outlet, and a fiber chamber for receiving a predetermined sensor fiber of the fiber network being routed through the sensor housing. The sensor has a sensor actuator for engaging the sensor fiber to generate an intrusion signal upon detecting predetermined movement of the moveable member causing the intrusion signal to be transmitted along the sensor fiber to a processor whereby the intrusion and location of the intrusion may be determined by the processor. Preferably, the sensor includes a magnetic actuator having a magnetic attraction to the moveable members whose interruption causes activation of the sensor and generation of the intrusion signal, and a signal shaping device acts to produce a signal having a prescribed minimum pulse width to assure detection no matter how quickly the sensor actuator returns to a deactivated position.
ORAL TREATMENT DEVICES
THAT INCLUDE A THIN,
FLEXIBLE BARRIER LAYER AND
AN ENDOSKELETON
TREATMENT OR ADHESIVE
COMPOSITION

Oral treatment devices (100) include a barrier layer (102) and an oral treatment composition (112), and optionally an auxiliary adhesive composition, that acts as an endoskeleton so as to at least partially contribute to maintaining the barrier layer (102) in the shape of a dental tray, or in a tray-like configuration, prior to use. The barrier layer (102) protects the oral treatment (112) and/or adhesive composition from saliva or moisture during use. The treatment and/or auxiliary adhesive compositions (112) can have a consistency ranging from a sticky, viscous gel or a solid. They preferably

May 31, 2010
include a tissue adhesion agent comprising a hydrophilic polymer.

A surgical footswitch, comprising:
(a) a base;
(b) a treadle mounted to the base; and
(c) a pivotable heel cup slidably retained on the treadle so as to adjustably increase or decrease a length of the treadle.
A surgical footswitch, comprising:
(a) a base;
(b) a treadle pivotally and rotationally mounted to the base; and
(c) a pair of switches mounted to the treadle so that rotation or counter-rotation of the treadle operates the switches.

[11][21] 171888

FOOTSWITCH

A surgical footswitch, comprising:
(a) a base;
(b) a treadle mounted to the base; and
(c) a heel cup rotationally mounted to the treadle so that the heel cup may be rotated independently of any movement of the treadle.

[11][21] 171889
A surgical footswitch, comprising:
(a) a base having a bottom;
(b) a treadle pivotally and rotationally mounted to the base;
(c) a plurality of plungers retractably mounted within the base; and
(d) a relatively high friction material mounted to the base bottom, where the plungers retract within the base when weight is placed on the footswitch and extend outwardly from the base and the relatively high friction material when no weight is placed on the footswitch.
(d) a heel cup slidable and rotatably retained on the treadle so as to adjustably increase or decrease a length of the treadle;
(e) a pair of switches mounted to the treadle so that rotation or counterrotation of the treadle operates the switches;
(f) a plurality of plungers retractably mounted to the bottom; and
(g) a relatively high friction material mounted to the base bottom, wherein the plungers retract within the base when weight is placed on the footswitch and extend outwardly from the base and the relatively high friction material when no weight is placed on the footswitch.

[11][21] 171891

[54] FOOTSWITCH

[11][21] 172219

[54] SUPERFINISHING LARGE PLANETARY GEAR SYSTEMS
Disclosed herein is a new improved large planetary gear system used on the input stage of wind turbine power generators. This improved planetary gear system reduces or eliminates lubricant debris traditionally generated from the gear teeth, thereby eliminating an initiating source for bearing failure. To achieve these results, some and preferably all of the gear teeth (4) within the planetary gear system (1, 2, 3) are superfinished using chemically accelerated vibratory finishing to a surface roughness of approximately 0.25 micron or less. Several objects and advantages of the invention are to provide a gearbox with reduced metal debris, improved bearing life, reduced wear, reduced vibro-frictional noise, improved contact fatigue, improved fretting resistance, improved lubrication, to simplify the run-in process, and to enhance the durability and efficiency of the gearbox.
The present invention relates to a sulfolobus expression vector comprising: (a) sulfolobus origin of replication; (b) the genes encoding the structural proteins and the site-specific integrase of SSV1, SSV2 or pSSVx, operatively linked to expression control sequences and a packaging signal; (c) one or more selectable marker gene(s), operatively linked to sulfolobus expression control sequences; and (d) a sulfolobus promoter followed 3' by a restriction enzyme recognition site or a multiple cloning site for insertion of a gene of interest and optionally a 3' regulatory element. Moreover, the present invention relates to a shuttle vector comprising the sequences of the expression vector of the invention and additional sequences for propagation and selection in E. coli, wherein the additional sequences comprise (a) an E.coli on of replication; and (b) a marker for selection in E.coli. Furthermore, the invention relates to host cells transformed with the expression vector as well as to a kit comprising a vector or a host cell of the present invention. Finally, the present application also relates to a method for generating infectious subviral particles.
The invention relates to a method for processing mail (100, 200, 300), wherein a plurality of mailing items inserted into insertion places are collected and subsequently transported in a container (120, 220, 320) to postal centres (110, 210, 310) where they are sorted in sorting devices according to postal categories. The invention is characterised in that the mail is placed in transport containers which are transported to unloading areas in postal centres. When the transport container is filled and/or during the transportation of the container to the postal centres, random partial pre-sorting of mail takes place according to postal categories so that, when the mail is removed from the containers at the unloading areas (130, 230, 330), it is in the form of piles formed by the predetermined pre-sorting method and sorted according to the postal categories, whereupon it is guided to subsequent processing stations according to said postal categories.

[54] PHYSICAL MODE OF ACTION PESTICIDE

[52] 04.06.2004
[51] Int. Cl.(2009.01) A01N 25/04, 63/02, 65/00
[71] BROOK CHANDLER MURPHY,
U.S.A.
TODD C. STECKLER, U.S.A.

[51] Int.(2008.04) B07C 1/10
[71] DEUTSCHE POST AG, GERMANY
[87] WO/2004/110654
[74] EITAN MEHULAL LAW GROUP,
10 ABBA EBEN BLVD.,
P.O. B. 2081,
HERZLIYA 46120

[11][21] 172446
A physical mode of action pesticide for application on plants and in soils, and methods of manufacture and application, comprising an active ingredient in the form of a polymer in a concentration of less than 0.1 % wt., a surfactant, a co-solvent and a diluent in a hydrocolloid suspension. The suspension polymer is preferably a polysaccharide having a molecular weight of 10,000 to 25,000,000 and preferably in the range of about 600,000. The pesticide preferably also includes a targeting ingredient for directing the active ingredient to a particular target.

The applications for division from this application have not yet been published.

[57] PERIODONTAL MEDICAMENT DELIVERY TRAY

A tray fitted to at least some teeth of a patient’s upper or lower arch is provided for the application of medications to the teeth and to adjacent gum tissue for treatment of periodontal disease. The tray is constructed from resilient material molded to conform to the teeth and gum tissue. The tray includes at least one recess formed to conform to the teeth. A seal surrounds the recess at a location corresponding to the patient’s gum line for applying pressure at the patient’s gum line when the patient’s teeth are disposed in the recess. The recess contains a quantity of a medication. Upon installation of the tray on the patient’s teeth, the medication is forced onto the surface of the teeth and subgingivally by the seal into any pockets in the patient’s gums proximate the teeth. If desired, a propulsion agent can be disposed within the recess such that upon application of the tray onto the patient’s teeth, the propulsion agent generates pressure within the recess so as to positively force the medication onto the teeth.
patient’s teeth and into any of the pockets in the patient’s gums proximate the teeth. Methods for making the tray and for applying medication to a patient’s teeth and gums also are disclosed.

MODULE AND FRAME FOR CABLE ENTRIES

The present invention concerns a module (3) and a frame (1) for cable entries, pipe penetrations etc. The module (3) has end parts (7) and middle parts (8) adaptable to receive flat cables (6) or the like having an elongated cross section. The end parts (7) may be identical to parts forming a module (2) for receiving cables, pipes etc. having a circular cross section. The frame (1) is to receive one or more of said module (3).
In an inkjet device for containing, degassing and supplying ink, gas is supplied to a container (10) for the ink so that the gas bubbles through the ink in the container (10). A controller controls a gas supplying means to operate in at least two modes including a degassing mode in which the pressure in the container is at a degassing pressure and the gas supplying means is controlled to supply the gas at a pressure above the degassing pressure to bubble through the ink, and an ink supplying mode in which thecontainer (10) is at an ink delivery pressure. In preferred examples, the ink container is arranged for supplying ink to a printhead; using the degassing arrangement, the formation of bubbles in the ink at the printhead can be reduced.
Filter systems that are effective against a broad range of contaminants including HCN, cyanogen chloride (CK), acid contaminants, and basic contaminants such as ammonia without the need (but with the option, if desired) for using molybdenum or chromium containing materials. The filtering systems of the present invention include a tungsten-based material and other impregnants incorporated into a substrate such as filter media particles.
pellets, the size of which ranges from 50 to 2500 µm and which essentially consist of: (a) an inner matrix layer containing an active substance which is a peptide or a protein, including the derivatives or conjugates thereof, and which is embedded in a matrix consisting of a polymer with mucoadhesive effect, and (b) an outer film coating essentially consisting of an anionic polymer or copolymer, which can be optionally formulated with pharmaceutically conventional adjuvants, more particularly softening agents.

ARRANGEMENT COMPRISING A CERVICAL PROSTHESIS AND AN INSERTION INSTRUMENT

The invention relates to an arrangement comprising a multipart intervertebral prosthesis (9) that is provided with a top and bottom endplate (91, 92) and an intermediate sliding core (93), a couple of accommodating apertures (96, 97) or protrusions being associated with each endplate (91, 92), and an insertion instrument (1) that is provided with a handle region (21, 31) and a catching region (22, 32) with retaining protrusions (51, 52) or apertures which can be inserted into the accommodating apertures or protrusions in order to retain the intervertebral endoprosthesis (9) on the insertion instrument (1). According to the invention, the accommodating apertures (96, 97) are disposed in lateral faces of the intervertebral endoprosthesis (9) while at least the couple of accommodating apertures (96), which are associated with one of the endplates (92), are provided with a shape that expands in the direction of the other endplate (91) such that intervertebral endoprostheses (9) having different thicknesses can be retained securely and without the risk of being mixed up, without having to make modifications to the insertion instrument (1).
There is disclosed a process which allows to simplify the manufacture of devices (20; 30) which contain thereinside a deposit of non evaporable getter material (17; 32) on a support (22; 33), which may be an internal wall of the same devices. The process comprises the operation of treating the support with the getter material with at least an acid or basic solution.
The invention relates to an oil suspension concentrate containing: (a) the herbicide active ingredient diflufenican, and (b) at least one solvent from the group of hydrocarbons. Said oil suspension concentrate is suitable for using in the field of plant protection.

The invention relates to a method for individually packing sheet or film-type materials in an automatic manner, said materials consisting of at least one material layer, in a packing unit with marked contents. A marking (40) made of a waxy marking material is applied to a warmed first packing material strip (20). The sheet or film-type material (10) is fixed to the marking with a surface thereof, whereby the roughness of the

May 31, 2010
surface thereof is greater than the roughness of the surface of the first packing material strip. A second packing material strip (30) is applied to the sheet or film-type material and is connected to the first packing material strip in order to form a closed packing unit. The packing unit (35) is cooled and the marking is separated from the first packing material strip. A secure packing method and a marking for sheet or film-type materials are developed according to said inventive method.

SELECTIVE SYNTHESIS OF CF3- SUBSTITUTED PYRIMIDINES

The present invention relates to a method of making a compound of the formula (I), wherein X_1, X_2 and R_3-R_4 are as defined herein. The method includes reacting a compound of the formula (II) with an amine of formula (III) (HNR_3R_4) in the presence of a Lewis Acid and a non-nucleophilic base. The 2,4-diamino pyrimidine moiety is a common component in a variety of biologically active drug-like molecules and pyrimidine derivatives have been found to be useful in the treatment of abnormal cell growth, such as cancer, in mammals.

[11][21] 173363

[54] SANFORD T.COLB & CO., P.O.B. 2273, REHOVOT 76122

[57] The present invention relates to a method of making a compound of the formula (I), wherein X_1, X_2 and R_3-R_4 are as defined herein. The method includes reacting a compound of the formula (II) with an amine of formula (III) (HNR_3R_4) in the presence of a Lewis Acid and a non-nucleophilic base. The 2,4-diamino pyrimidine moiety is a common component in a variety of biologically active drug-like molecules and pyrimidine derivatives have been found to be useful in the treatment of abnormal cell growth, such as cancer, in mammals.

[22] 24.08.2004
[51] Int. Cl.(2009.01) C07D 239/42, 401/04, 403/04
[71] PFIZER PRODUCTS, INC., U.S.A.
[87] WO/2005/023780

[74] SANFORD T.COLB & CO., P.O.B. 2273, REHOVOT 76122

[57] The present invention relates to a method of making a compound of the formula (I), wherein X_1, X_2 and R_3-R_4 are as defined herein. The method includes reacting a compound of the formula (II) with an amine of formula (III) (HNR_3R_4) in the presence of a Lewis Acid and a non-nucleophilic base. The 2,4-diamino pyrimidine moiety is a common component in a variety of biologically active drug-like molecules and pyrimidine derivatives have been found to be useful in the treatment of abnormal cell growth, such as cancer, in mammals.

[22] 24.08.2004
[51] Int. Cl.(2009.01) C07D 239/42, 401/04, 403/04
[71] PFIZER PRODUCTS, INC., U.S.A.
[87] WO/2005/023780
The present invention provides an alpha-2A/alpha-1A selective agonist that includes a compound represented by Structure 1 or a pharmaceutically acceptable salt, ester, amide, stereoisomer or racemic mixture thereof. The present invention further provides a pharmaceutical composition that contains a pharmaceutical carrier and a therapeutically effective amount of an alpha-2A/alpha-1A selective agonist that includes a compound represented by Structure 1 or a pharmaceutically acceptable salt, ester, amide, stereoisomer or racemic mixture thereof.

INFORMATION RECORDING MEDIUM, RECORDING DEVICE AND RECORDING METHOD FOR INFORMATION RECORDING MEDIUM, REPRODUCTION DEVICE AND REPRODUCTION METHOD FOR INFORMATION RECORDING MEDIUM, COMPUTER PROGRAM FOR RECORDING OR REPRODUCTION, AND DATA STRUCTURE CONTAINING

368 May 31, 2010
CONTROL SIGNAL

[22] 22.07.2004
[51] Int. Cl.(2009.01) G11B 20/10
[71] PIONEER CORPORATION, JAPAN
[87] WO/2005/015558

REINHOLD COHN AND PARTNERS
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

An information recording medium (100) includes: a user data area (108) for storing recording data; a plurality of temporary defect management areas (104, 105) for temporarily recording defect management information (120) as the base for defect management of a defect in the data area; and a flag area (111) for recording identification information identifying a temporary defect management area containing valid defect management information among the plurality of temporary defect management areas. The identification information is recorded as the type of a combination pattern of the area defined as a recorded state by a predetermined rule and the area remaining as a non-recorded state.

PHOSPHORUS- CONTAINING IMIDAZOLINES AND PROCESS FOR THEIR PREPARATION

[22] 26.08.2004
[51] Int. Cl.(2009.01) C07B 53/00, C07C 05/03, 29/17, 41/20, 43/205, 43/21, 67/303, C07F 09/6506, 15/00
[71] SOLVIAS AG, SWITZERLAND

אינידזולינים מכילים פרוסるために תהליך

י“ח תבש א.נ-י 369 31.05.2010
Compounds of the formulae (I) and (Ia) where X_1 is secondary phosphino; R_3 is a hydrocarbon radical having from 1 to 20 C atoms, a heterohydrocarbon radical which has from 2 to 20 atoms and at least one heteroatom selected from the group consisting of O, S, NH and NR, or an $\text{-SO}_2\text{-R}$ radical; R is C_1-C_{18}-alkyl, phenyl or benzyl; the radicals R_4 are each, or the two radicals R_4 together a hydrocarbon radical having from 1 to 20 C atoms; R_{01} is a hydrocarbon radical having from 1 to 20 C atoms; and R_{02} and R'_{02} are each, independently of one another, a hydrogen atom or independently have the meaning of R_{01}, or R_{01} and R_{02} together with the C atom to which they are bound form a three- to eight-membered hydrocarbon or heterohydrocarbon ring. The compounds are chiral ligands for complexes of metals of transition groups I and VIII which act as catalysts for asymmetric additions, for example of hydrogen, onto prochiral unsaturated organic compounds.
A process for producing a 1,3-oxathiolane nucleoside comprising:
(i) preparing a 5-halo-2-protected-oxymethyl-1,3-oxathiolane; and
(ii) reacting the 5-halo-2-protected-oxymethyl-1,3-oxathiolane with a protected purine
or pyrimidine base in the absence of a Lewis acid.

The applications for division from this application have not yet been published.
A system for providing stand-off biometric verification of a driver of a vehicle at a control gate while the vehicle is moving, including an RFID vehicle tag reader, an RFID personal tag reader and a facial detection and recognition (verification) system. The RFID vehicle tag reader scans and reads data from an RFID vehicle tag of the vehicle that is trying to pass through the gate. The RFID personal tag reader data from an RFID personal tag carried by personnel who are driving in the vehicle. The facial detection and verification system scans and reads facial images for the driver. All the data and facial images detected by the reader are sent to a computer for further processing (final face verification).
Osteogenic proteins are delivered via an injectable solid rod or hardenable paste. The formulation comprises a calcium phosphate material, an osteogenic protein, and optional additives and active ingredients such as a bone resorption inhibitor. Methods of making injectable pharmaceutical compositions and methods of using the osteogenic compositions to treat bone defects are also disclosed.

METHOD AND DEVICE FOR DIGITALLY UPGRADING TEXTILE

The invention provides a method for digitally upgrading a textile article (T) using a textile upgrading device (1), the device (1) comprising a number of nozzles (12) for applying one or more substances to the textile (T), in addition to transport means (2) for transporting the textile (T) along the nozzles (12), wherein the nozzles (12) are ordered in a number of successively placed rows (4, 5, 6, 7) extending transversely of the transporting direction of the textile article (T), the method comprising the steps of:
guiding the textile article (T) along a first row (4) of nozzles (12); performing with the first row (4) of nozzles (12) one of the operations of painting, coating or finishing of the textile article (T) carried therealong; subsequently guiding the textile (T) along a second row (5) of nozzles (12); and performing with the second row (5) of nozzles (12) another of the operations of painting, coating or finishing of the textile article (T) carried therealong.

TISSUE CONTAINER WITH AUXILIARY COMPARTMENT

14.11.2002
Int. Cl.(2009.01) B65D 51/28, 81/32, 83/08
DIVISION FROM 152867
LIAT DE-VRIES
LIAN KEHAT ADV. AS AN OFFICIAL RECEIVER
REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

Abstract
This specification was examined in accordance with regulation 35 of the Patent Regulations, 5728 - 1968
The parent application from which this application has been divided has not yet been published
The applications for

May 31, 2010
A drawn aluminum can shell has a peripheral crown which is double-seamed with an end portion of an aluminum can body to provide a can end having a generally flat center panel connected by an inclined curved or straight panel wall to an inclined inner wall of an annular U-shaped countersink. The countersink has an outer wall which connects with an inclined lower wall portion of a chuckwall at a junction below the center panel, and the chuckwall has a curved or inclined upper wall portion which connects with an inner wall of the crown. The chuckwall also has an intermediate wall portion forming a break, and the inner bottom width of the countersink is less than the radial width of the panel wall. The inclined upper wall portion of the chuckwall extends at an angle greater than the angle of the inclined lower wall portion of the chuckwall.
The invention relates to a medicament preparation for inhalation, containing a compound of formula (I) as an exclusive active ingredient, wherein X represents an anion which is selected preferably from the groups comprising chloride, bromide, iodide, sulphate, phosphate, methane sulfonate, nitrate, meleate, acetate, citrate, fumarate, tartrate, oxalate, succinate, benzoate and p-toluolsulfonate, as a solvent ethanol or mixtures of ethanol and water, at least one pharmacologically compatible acid thereof, in addition to pharmacologically compatible auxiliary agents and/or complexing agents.

![Chemical structure](image)
TRIAZA-SPIRIPIPERIDINE DERIVATIVES FOR USE AS GLYT-1 INHIBITORS IN THE TREATMENT OF NEUROLOGICAL AND NEUROPSYCHIATRIC DISORDERS

The invention relates to compounds of the general formula (I), wherein A-A is -CH₂-CH₂-, -CH₂-CH₂-CH₂-, -CH₂-O- or -O-CH₂-; x is hydrogen or hydroxy; R₁ is aryl or heteroaryl, unsubstituted or substituted by one or more substituents, selected from the group consisting of lower alkyl, lower alkoxy, halogen or trifluoromethyl; R₂ is aryl or heteroaryl, unsubstituted or substituted by one or more substituents, selected from the group consisting of lower alkyl, lower alkoxy, halogen or trifluoromethyl, or is lower alkyl, -(CH₂)ₙ-cycloalkyl, -(CH₂)ₚ-OF₃, -(CH₂)ₚ-O-lower alkyl, -(CH₂)₁₂ phenyl, optionally substituted by halogen, lower alkyl, lower alkoxy or trifluoromethyl, or is -(CH₂)ₚ-NRR', wherein W and R' form together with the N-atom a heterocyclic ring, selected from the group consisting of piperidine, morpholine, thiomorpholine or 1,1-dioxo thiomorpholine; R₃, R₄ are independently from each other hydrogen, lower alkyl, phenyl or benzyl; R₅ is hydrogen, lower alkyl or benzyl; R₆ is hydrogen or lower alkyl; n is 0, 1 or 2; and p is 2 or 3; and to pharmaceutically acceptable acid addition salts thereof for the treatment of psychoses, pain, neurodegenerative disfunction in memory and learning, schizophrenia, dementia and other diseases in which cognitive processes are impaired, such as attention deficit disorders or Alzheimer's disease.
MILKING APPARATUS AND METHOD FOR USE THEREOF

An apparatus (10) for gripping the teat of an animal assisting in drawing milk therefrom. The apparatus (10) includes a housing and more than one constricting element (14a-c) arranged in the housing so that the constricting elements (14a-c), which are operable in both constricting (14a-c) and non-constricting modes, periodically constrict the teat. The apparatus (10) further includes means for switching the constricting elements (14a-c) back and forth between non-constricting and constricting modes. The apparatus (10) includes a controller (56) in communication with the means for switching, which in accordance with a predetermined timing and spatial sequence controls the periodic switching of the constricting elements (14a-c) from constricting to non-constricting modes and vice-versa. A system including such a gripping apparatus (10) for drawing milk from the teat of an animal is also taught. Similarly, a method for milking an animal which imitates hand milking and does not employ a vacuum system is described.
A door lock with controllable handle operation including a bolt (3), a follower (5) for moving the bolt and an operation axis (4), on both ends of which an actuator can be installed for operating the follower (5), whereby force transmission from either side of the lock to the follower (5) is established by means of movable coupling members (10a, 10b), which are controlled by a solenoid arrangement (8, 9) or the like, and in which the follower (5) is provided with two separate torsion units (6a, 6b) installed on the operation axis (4) on different sides of the follower (5) and turnably secured thereto, which units can be connected to force transmission with the follower (5) by utilising said coupling members (10a, 10b). The door lock comprises a selecting member (7) movable from one lock side to the other, which member retains the torsion unit (6a, 6b) selected in each case to be unturnable with respect to the follower (5), so that force transmission from the operation axis (4) to the follower (5) is connected on that particular side of the lock, and on the other side of the lock, force transmission from the operation axis (4) to the follower (5) can be selectively either connected or disconnected by means of said coupling members (10a, 10b) under the control of the solenoid arrangement (8, 9).
METHOD FOR DETERMINING THE VERTICAL ON MOVING OBJECTS AND DEVICE FOR ITS IMPLEMENTATION

A method for determining a vertical on moving object including in one of the two channels, at least the following steps:

determining an apparent acceleration in a plane to be chosen, it passing through mutually perpendicular axes of a platform, whereon acceleration being determined, one of which being vertical axis and another being a chosen axis, for example, parallel longitudinal axis of the moving object, in particular, being superposed with the said longitudinal axis,
determining one of the accelerations in the said chosen plane, for example, horizontal acceleration being a part of the said apparent acceleration,
determining the difference of the said accelerations, in particular, the said apparent acceleration and the said horizontal acceleration,
changing the polarities of the said accelerations in the case of changing the polarity of another acceleration, in particular, vertical acceleration one being also part of the said apparent acceleration,
determining a gravitational vertical by the said difference, in particular, by means of bringing the said difference up to zero.
A padlock hasp assembly 10 comprising:
a first hasp member 12 and a second hasp member 14 comprising interface contours
including complimentary shaped protrusions and recesses that mate with one another;
and
a locking assembly housed in said first hasp member, said locking assembly
comprising a cylinder lock 18 including a tumbler 20 adapted to bring a locking
element 26 into locking engagement with a first notch 24 formed in a locking bolt 16,
said locking bolt being arranged for sliding motion through a first bore 28 formed in
said first hasp member, and when said second hasp member is aligned with said first
hasp member, said locking bolt is slidable into a second bore 30 formed in said second
hasp member so as to lock said first and second hasp members together; and
wherein said locking element is movable into locking engagement with a second notch
25 formed in said locking bolt so as to prevent moving said locking bolt completely
out of said first hasp member.
An exercise device (10) comprising:
(a) a first foot-support surface (12);
(b) a second foot-support surface (14);
(c) an actuator system (16) associated with said first and second foot-support surfaces and configured to displace each of said first and second foot-support surfaces along an arbitrary path defined in at least two dimensions over a range of at least 25 centimeters by 15 centimeters; and
(d) a control system (18) associated with said actuator system and configured or
controlling said actuator system so as to generate an exercise path for each of said first and second foot-support surface.
CLEANING SOLUTIONS AND ETCHANTS AND METHODS FOR USING SAME

[22] 27.10.2004
[51] Int. Cl.(2009.01) H01L 21/311
[71] SACHEM INC., U.S.A.
[72] WILLIAM A WOJTCZAK, DEAN DEWULF, SIAN COLLINS

May 31, 2010
Composition for cleaning or etching a semiconductor substrate and method for using the same. The composition may include a fluorine-containing compound as an active agent such as a quaternary ammonium fluoride, a quaternary phosphonium fluoride, sulfonium fluoride, more generally an -onium fluoride or ‘multi’ quaternary -onium fluoride that includes two or more quaternary -onium groups linked together by one or more carbon-containing groups. The composition may further include a pH adjusting acid such as a mineral acid, carboxylic acid, dicarboxylic acid, sulfonic acid, or combination thereof to give a pH of about 2 to 9. The composition can be anhydrous and may further include an organic solvent such as an alcohol, amide, ether, or combination thereof. The composition are useful for obtaining improved etch rate, etch selectivity, etch uniformity and cleaning criteria on a variety of substrates.

METHOD FOR PREPARING DRUG ELUTING MEDICAL DEVICES AND DEVICES OBTAINED THEREFROM

The present invention relates to a method for preparing a drug eluting medical device comprising the application to a stent of a polymer having functional groups capable of chemically binding biological molecules, characterised in that said application is carried out in a single step by means of cold plasma methods. Moreover, the invention also relates to a medical device obtained therefrom.
External ocular shields for protecting a patient's eyes from medical treatment radiation energy such as a laser during a medical procedure. Each shield has an external surface that absorbs energy that hits the shield. The shields are connected to each other by a nose piece, and the nose piece is connected to each shield by a mounting means. The mounting means are positioned perpendicular to the shields and parallel to each other so that the nose piece can pivot upward towards the user's forehead and downward towards the user's chin without altering the fit of the shields over the user's eyes.
A wireless communication device (600) with an antenna system (602) is disclosed. The antenna system (100) is an internal antenna with broadband characteristics which provided coverage over multiple frequency bands. The antenna system (100) has a finite ground surface (102), an elongated conductor (104) supported by a dielectric spacer (106), and at least one series signal feed (110).
A method for reading a microbolometer array having a number of microbolometer sensor elements that are arranged into a number of rows and a number of columns, each of the microbolometer sensor elements in a column being connected to a different one of a number of row read out lines when the column is selected, and a selected one of the number of row read out lines being connected, either directly or indirectly, to an output amplifier when a row is selected, the method comprising:

1. selecting a first row of microbolometer sensor elements;
2. reading the microbolometer sensor elements of the first row onto a first read out line by individually selecting each of the columns of the microbolometer array;
3. deselecting the first row of microbolometer sensor elements;
4. deselecting the columns of the microbolometer array for a predetermined period of time while a second row is selected;
5. selecting a second row of microbolometer sensor elements; and
6. reading the microbolometer sensor elements of the second row onto a second read out line by individually selecting each of the columns of the microbolometer array.
A composite fabric is provided that contains staple fibers hydraulically entangled with a nonwoven web formed from continuous filaments. A portion of the staple fibers is entangled with the web, while another portion protrudes through the web. The resulting surface topography has one surface with a preponderance of the smooth, staple fibers, and another surface with a preponderance of the continuous filaments from the nonwoven web, but also including some of the protruded smooth, staple fibers. Thus, each surface contains smooth staple fibers and is soft.
first plane and a second plane, said planes being orthogonal to each other. In use, a
connector (322) allows the gauge (301) to be connected to various surgical
implements. The position of the indicator needle (315) on the plumb bob (303) is noted
with reference to two sets of markings (316 and 317) on the body (302) to allow a
surgeon to determine a first angle in a first plane and a second angle in a second plane.
In one exemplary application of the invention, the first and second angles are
anatomical angles associated with the surgical insertion of prosthetic components.
A variant of a parent anti-vascular endothelial growth factor (VEGF) antibody, said parent anti-VEGF antibody having a heavy chain variable domain comprising the amino acid sequence of SEQ ID NO: 7 and a light chain variable domain comprising the amino acid sequence of SEQ ID NO: 8, wherein:
(i) said variant binds human VEGF with stronger binding affinity than the parent and comprises an amino acid substitution at least in the hypervariable region CDRH1 and/or in the hypervariable region CDRH3 of the heavy chain variable domain of said parent antibody,
(ii) the variant has a heavy chain variable domain comprising the following hypervariable region amino acid sequences:
CDRH1: GYX₁X₂X₃X₄YGX₅N (SEQ ID NO: 117), wherein X₁ is D, T or E, X₂ is F, W or Y, X₃ is T, Q, G or S, X₄ is H or N and X₅ is M or I; and
CDRH3: YPX₁YX₂X₃X₄X₅HWYFDV (SEQ ID NO: 119), wherein X₁ is H or Y, X₂ is Y, R, K, I, T, E or W, X₃ is G, N, A, D, Q, E, T, K or S, X₄ is S, T, K, Q, N, R, A, E or G and X₅ is S or G; and
(iii) the variant has an amino acid sequence having at least 90% amino acid identity with the parent antibody heavy or light chain variable domain of SEQ ID NO:7 or SEQ ID NO:8.
The invention relates to a method for the production of a thermoplastic optical conduit (14) comprising an optical relay (26) which is formed by a parallelepipedic bar used to transmit light along the longitudinal axis (A-A') thereof, known as the first axis, and provided with a partition wall (28) on one of the extremities thereof, said partition wall being inclined in relation to the first axis and with a lens (32) whose axis of revolution (B-B') is contained on a longitudinal plane of symmetry. The maximum given height of the conduit (14) independent of the width of the lens is H_{max} and the average given length on the longitudinal axis (A-A') is L_{moy}. According to the invention, the conduit is made in a single piece by injecting the thermoplastic material into a mould (1) having a cavity whose shape is identical to that of the conduit. Injection occurs via an injection threshold which is disposed laterally in relation to the cavity on a surface which is substantially parallel to the plane defined by the axes (A-A', B-B'). The height (h) of the threshold lies between 0.2 H_{max} and H_{max} and the length thereof (l) lies between 0.2 L_{moy} and 0.8 L_{moy}. The thermoplastic material is injected at a rate of 400 to 1500 mm3/s.
A method in a plasma processing system for etching a feature through a given layer on a semiconductor substrate. The method includes placing the substrate in a plasma processing chamber of the plasma processing system. The method also includes flowing an etchant gas mixture into the plasma processing chamber, the etchant gas mixture being configured to etch the given layer. The method additionally includes striking a plasma from the etchant source gas. Furthermore, the method includes etching the feature at least partially through the given layer while applying a bias RF signal to the substrate. The bias RF signal has a bias RF frequency of between about 27 MHz and about 75 MHz and a bias RF power component that is configured to cause the etch feature to be etched with an etch selectivity to a second layer of the substrate that is higher than a predefined selectivity threshold or configured to cause the feature to be etched in accordance to predefined etch rate parameters and etch profile parameters at the bias RF frequency.
DERIVATIVES OF 1-PIPERAZINE- AND 1-HOMOPIPERAZINE-CARBOXYLATES, PREPARATION METHOD THEREOF AND USE OF SAME AS INHIBITORS OF THE FAAH ENZYME

The invention relates to a compound having general formula (I), wherein: m represents an integer equal to 1 or 2; R1 represents an aryl- or heteroaryl-type group that is optionally substituted by one or more R3 or R4 groups; R2 represents a group having general formula CHR5CONHR6; R3 represents a halogen atom or a hydroxy, cyano, nitro, C1-6-alkyl, C1-6-alkoxy, C1-6-thiaoalkyl, C1-6-fluoroalkyl, C1-6-fluoroalkoxy, -O-(C2-3-alkylene)-, -(C3-7-cycloalkyl)-C1-3-alkylene group; R4 represents an aryl- or heteroaryl-type group, whereby the R4 group(s) can be substituted by one or more identical or different R3 groups; R5 represents a hydrogen atom or a C1-3-alkyl group; R6 represents a hydrogen atom or a C1-6-alkyl group; R7 and R8 represent, independently of each other, a hydrogen atom, a C1-3-alkyl group or a phenyl.

[11][21] 176478
group, said compound taking the form of a base, an acid addition salt, a hydrate or a solvate. The compounds are inhibitors of the FAAH enzyme, which can be used for the treatment of pain, eating disorders, neurological and psychiatric pathologies, etc.

\[
\begin{align*}
\text{(I)}
\end{align*}
\]

[54] KNITTING MACHINE

[22] 28.06.2006
[51] Int. Cl.(2009.01) D04B 27/00
[71] KARL MAYER TEXTILMASCHINENFABRIK GMBH, GERMANY
[74] REINHOLD COHN AND PARTNERS, 26A HABARZEL ST., RAMAT HACHAYAL 69710

[57] A knitting machine (1), with a thread source (2), a knitting region (3), a remover (4) for the knitted product (11) and a piece length counter (17) (connected to the machine controller (16)) with a specific action on the machine on reaching a specific piece length, has a second piece length counter (17) (also connected to the machine controller) with a second specific action on the machine on reaching a specific piece length.
A method of transforming energy in a rotary screw machine that comprises a first and a second set of conjugated male and female elements spaced apart from each other along a central axis and having inner/outer profiled surfaces. Upon rotary motion of the male and/or female elements, working chambers are formed between these elements. The working chambers perform an axial movement. The rotary motions of the different sets (1, 2, 3) are synchronized in such a manner that synchronous and inphase motion of the elements in the different sets is performed with different values of angular periods of oscillation of axial movement of the working chambers. Thereby, a working medium transported in these working chambers can be compressed or expanded.
An apparatus for the manufacture of chemical vapor deposited domes comprising: a vapor deposition chamber (64) having a plurality of sides, a base and a top, the base having a reactant port for receiving a flow of chemical reactants from a reactant source and the top having an exhaust port for removal of non-reacted reactants, at least one male mandrel (70) being joined to one of the plurality of sides of the deposition chamber by an isolation fixture (68) such that the flow of chemical reactants in the vapor deposition chamber does not impinge on the at least one male mandrel.
An arrangement for performing a multi-step polishing process on a single stage chemical mechanical planarization (CMP) apparatus utilizes an in-situ conditioning operation to continuously clean and evacuate debris and spent polishing slurry from the surface of the polishing pad. By presenting a clean, virtually ‘new’ polishing pad surface at the beginning of each planarization cycle, polishing agents of different chemistries, morphologies, temperatures, etc. may be used without the need to remove the wafer to change the polishing source or transfer the wafer to another CMP polishing station. A multi-positional valve may be used to control the introduction of various process fluids, including a variety of different polishing slurries and conditioning/flushing agents. The use of different conditioning materials allows for the surface of the polishing pad to be altered for different process conditions (e.g., neutralizing prior polishing chemicals, modifying the surface temperature of the pad to control polishing rate, use of surfactants to dislodge particles that become attracted to the pad surface, etc.).
The invention relates to a cutting insert (1) which is constituted of a plurality of coherent individual cutting inserts (2) which are disposed one after the other. Said insert can be used one after the other using an intermediary weakened point and detaching the preceding individual cutting insert (2) which was previously used for cutting. According to the invention, the cutting insert (1) is configured as a blade and has a lower (13) and an upper contact surface (14) to be received in an elongate recess (5) having a lower (15) and an upper mating surface (16) in the tool base (4) of a burring tool or disk milling cutter. Every individual cutting insert (2) is provided with a positioning means (3) which interacts with a complementary positioning means (9) of the tool base (4).
An apparatus for calcining gypsum including a housing having a bottom wall, opentop, and a plurality of side walls extending therebetween. A fixture is located adjacent the open top for receiving gypsum from a source and transferring the gypsum into the housing. At least one burner is connected to the housing and operable for combusting an air-fuel mixture to heat the gypsum. At least one serpentine burner conduit extends from the burner through the housing and terminates through a support floor of the apparatus. The exhaust flow is then directed through a fluidization pad and into the gypsum to further heat the gypsum product. An agitation mechanism is operable to mix the gypsum adjacent the fluidization pad to prevent pockets of gypsum from coagulating and preventing fluidization of the gypsum.
display means (5), an image selected by the user, these control means having a
detection area (9) situated on the housing (2) that is delimited by a surface
discontinuity such as a recess or a relief (11). The housing (2) encloses a sensor
element associated with an electronic driving circuit and an electrostatic foam element
whose one end is applied against the sensor element and whose opposite end is applied
against an area of the inner face of the housing (2) located to the right of the detection
area (9).

[54] MORTISE LOCK WITH LIGHTED TRIM PLATE SIGN

[22] 08.12.2004
[51] Int. Cl.(2009.01) E05B 17/10, 41/00, F21V 09/16
[71] SARGENT MANUFACTURING COMPANY, U.S.A.
[87] WO/2005/083321
[74] REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

A standard mortise latch lock escutcheon or trim plate having an aperture for housing
an electroluminescent strip captured within a two-piece lens structure. A dc or ac
external power supply converter is used in conjunction with the existing grid power.
The converter is situated on the mortise lock casing. The electroluminescent strip is
captured within the lens structure along with partially transparent, lettered signage.
The lens structure has an outer lens with a protrusion to align the signage within the
aperture. The lettered signage is reversed lettered, such that light emits through the
letters and is blocked by an opaque background when the electroluminescent strip is
supplied power. In instances where the mortise latch lock is used on doors for purposes
other than egress, a switch may be used to toggle power to the signage when the thumb
lever is turned in a locked position.

402 May 31, 2010
MORTISE LOCK INTEGRATED TRIM ASSEMBLY WITH A RETRACTING SPINDLE

A mortise lock integrated trim mechanism is provided for mounting on the surface of a door and has a handle turning a spindle that extends into the door to operate a lock mechanism mounted therein. The trim assembly is pre-assembled and has a retracting spindle that extends between the trim mechanism and the lock mechanism to accommodate varying door thicknesses. The preferred assembly utilizes a cover plate, spring and mounting plate assembly holding a pair of alignment pins. This assembly is fit onto a door handle and secured to the door handle by a cap nut. An elongated spring is disposed in the handle and is secured to a spindle which axially extends from the handle. The spindle is automatically retracted to maximally fit into the hub of a mortise lock.
A multi-functional mortise lock that can be rapidly converted between different functions without opening the mortise lock case by installing blocking screws that extend through threaded blocking openings in a sidewall of the case and into blocking interference with moving components inside the case. The moving components include a lock/unlock lever, a latch retract lever and a spindle hub. The blocking screws are stored in threaded storage openings in the sidewall of the case. The sidewall of the case is marked adjacent to the threaded blocking openings and storage openings to identify functions that will be performed when the blocking screws are installed in one or more of the blocking openings.
ON-LINE MAKING OF POWDER-FREE RUBBER GLOVES

A powder-free medical glove having a first surface of a powder-free coagulant and a second surface with a polymer coating to ease donning. The powder-free coagulant on the first surface comprises micronized high-density polyethylene, a micro-emulsion of amino silicone, a dimethicone emulsion, calcium salts, an ethoxylated acetylenic diol surfactant and a cellulose thickener. The medical gloves are made in an on-line process of making latex articles that involves dipping hand-shaped formers into the coagulant before dipping them into the latex. The gloves are thereafter coated with a polymer to improve donnability before removal from the formers. The novel coagulant formulation permits easy removal of the articles from the formers, eases double-donning of gloves and eliminates the need for off-line processing.
METHOD AND APPARATUS FOR APPLYING VARIABLE CODED LABELS TO ITEMS OF PRODUCE

An apparatus and method are provided for automatically labeling individual produce items. Individual produce items are conveyed towards a rotary bellows or other applicator. A sensor senses at least one variable characteristic, such as size of each of the produce items. The sensed variable is transmitted to a laser coding device and a variable human or machine readable code is printed on an individual label prior to application of that label to the specific item of produce for which the variable characteristic was sensed. The laser coding beam either reacts with a reactive or ablative film on each label.
A method of manufacturing a bra pad having a thicker summit area, as well as the pad itself, includes holding a sheet of resilient and formable material of uniform thickness, such as thermoplastic foam, and forming the sheet to have a graduated thicker summit area corresponding to each summit of a bra or bra-like garment for including the pad, and a surrounding thinner area. Each pad thus has a thicker summit area for extending over the summits of the breasts.
The invention relates to polymer particles containing active agents, comprising a vinyl polymer of 10-80 wt.% of monomers comprising amino and/or carboxyl groups, insoluble in a part of the pH range from 0-10 and soluble in another part range, characterised in that said polymer particles, containing active agents, comprise 3-1000 parts of active agent per part of vinyl polymer, with a particle size in the range 20nm-8µm and the vinyl polymer is made up of >50 wt.% of polymers with a molecular weight of <100,000 Daltons.
A powered test-tube agitation device(10) includes a small plate (12) having a rest (13) for a test tube(14) to be agitated and operated in agitation by a powered mechanism (15). The powered mechanism (15) is started by means (17, 117) of optical detection of the entry of an object into a predetermined zone above the small plate. Advantageously the detection means are photoelectric infrared reflection detection means(17).

The invention concerns a sanding element with a succession of overlapping lamellas
(3, 4) containing sanding grains (9), characterised in that these lamellas (3, 4) are alternately formed of sanding lamellas (3) and compressible lamellas (4), whereby each sanding lamella (3) rests on a compressible lamella (4).

The invention relates to a surgical instrument, e.g., forceps, and method to be used for suturing tissue, the surgical instrument comprising a first arm and a second arm that are spring-connected at a proximal end, while at a distal end the first arm and the second arm can be move towards each other, and wherein at least the first arm and/or the second arm can be provided with a flexible body that is suitable for receiving and affixing a surgical needle, wherein the flexible body is designed for being positioned at the distal end, at an inside and/or lower side of the end of an arm.
A cervical intervertebral prosthesis comprising at least one cover plate (3,4), which can be joined to one of two neighboring intervertebrae (1, 2), and a securing plate (12) securing it ventrally to the vertebra (1,2). According to the invention, the securing plate (12) is a separate part which is not connected to the covering plate (3,4). It can be biodegradable.
There is provided a cerebrum evaluation device for evaluating the state of the cerebrum of an examinee by analyzing a speech signal of the examinee by using chaological signal processing utilizing the periodicity of the signal. The cerebrum evaluation device evaluates the state of the cerebrum according to the speech signal uttered by the examinee. The cerebrum evaluation device includes: a statistic information database containing chaological index values of speech signals of a plurality of examinees; a speech signal acquisition unit for acquiring a speech signal; a chaological index value calculation unit for calculating a chaological index value of the speech signal by the chaological signal processing utilizing the periodicity of the speech signal acquired; an evaluation unit for evaluating the state of the cerebrum of the examinee according to the calculated chaological index value by referencing the statistic information database; and an output unit for outputting the result evaluated by the evaluation unit.
METHOD OF SHAPING CONTAINER BODIES AND CORRESPONDING APPARATUS

Said method wherein a) said container (1, 6) is placed in a two halves mould (2) having an internal shaped wall (21), and b) an internal pressure P of a fluid is build up so as to shape said skirt (12), is characterized in that an external pressure P' of a fluid is applied in a said upper space (101) contiguous to an external or upper surface (100) of said open top end (10) and/or in a said lower space (141) contiguous to an external or lower surface (140) of said shaped bottom end (14), so as to have, during said span of time, a pressure difference low enough to prevent any distortion of said shaped open top end (10) and/or said shaped bottom end (14), so as to form a shaped metallic container (1', 6'). An apparatus for carrying out the method is also disclosed.
An internal connection dental implant and implant assembly in which the implant includes a lobed configuration for installing the implant and a beveled surface positioned on the proximal side of the lobed configuration for providing stability between the implant and a corresponding abutment.
An integrated sludge reduction method for biooxidation of wastewater comprising the steps of:

- providing an anaerobic wastewater treatment zone, an anoxic wastewater treatment zone, and one or more aerobic wastewater treatment zones, wherein the volume of the anaerobic treatment zone comprises from about 20 to about 40 percent, the volume of the anoxic treatment zone comprises from about 10 to about 40 percent, and the volume of the one or more aerobic wastewater treatment zones comprises from about 20 to about 60 percent of the total processing volume of the anaerobic, anoxic and aerobic tanks,
- introducing wastewater having BOD5 and suspended solids to be treated into the anaerobic treatment zone and settling at least a portion of the suspended solids to an anaerobic settled solids zone in the lower portion of the anaerobic treatment zone, circulating fluid from the anaerobic zone to the anoxic treatment zone, from the anoxic treatment zone to the aerobic treatment or zones, and from the anoxic treatment zone and/or the aerobic treatment zone(s) back to the anaerobic treatment zone, wherein at least about 50 percent by weight of the microbial sludge and other solids content (TSS) of the waste liquor recycled to the anaerobic zone is settled to the anaerobic settled solids zone in the lower portion of the anaerobic treatment zone together with settled influent wastewater solids, anaerobically digesting at least 50 percent by weight of the settled mixture of raw influent solids and the recycled microbial sludge solids to produce anaerobically digested solid, soluble and gas components in the anaerobic treatment zone which are conducted to the anoxic and aerobic treatment zones for microbial oxidation, and discharging treated water from the aerobic treatment zone.
The invention relates to a unit comprising an intraocular lens injector (10) with a body (11) containing an intraocular lens, and a conditioning device (20). This conditioning device (20) is provided for accommodating and storing said injector (10) before its use, is made of a watertight material, and is filled with a storage solution for holding at least the body (11) of the injector (10) and the intraocular lens in total immersion during the entire duration of storage. The conditioning device (20) comprises an essentially rigid reservoir (21, 22) and an opening (25) for placing and withdrawing the injector (10), said reservoir (21, 22) comprising at least one inner shoulder (26, 27) that interacts with a part of the injector (10) in order to center it and hold its injection end (14) of the lens away from the walls of the reservoir (21, 22).
[54] HEMOSTATIC TEXTILE MATERIAL

[22] 26.10.2006
[51] Int.Cl.(2009.01) A61K 09/70, 38/00, A61L 15/28
[71] VLADIMIR N. FILATOV, RUSSIA
VLADIMIR RYLTSEV, RUSSIA
URI MARTINOVITZ
ZIDKIYAHU SIMENHAUS

[74] WOLFF, BREGMAN AND GOLLER,
P.O.B. 1352,
JERUSALEM 91013

A hemostatic textile material to stop bleeding comprising: a dialdehyde cellulose carrier; a blood coagulation factor such as chitosan chemically immobilized thereon; a bacteriolytic agent such as a lysozyme enzyme; and optionally a component that prevents hemolysis chemically immobilized thereon.

[54] ADMINISTRATION FEEDING SET AND VALVE MECHANISM

[22] 25.05.2005
[51] Int.Cl.(2009.01) A61M 05/00
[71] SHERWOOD SERVICES AG,
SWITZERLAND
[87] WO/2005/115501
[74] REINHOLD COHN AND PARTNERS,
26A HABARZEL ST.,
RAMAT HACHAYAL 69710

An administration feeding set (10) adapted to be loaded to a flow control apparatus (12) is disclosed. The administration feeding set (10) comprises tubing (60) adapted suitably for fluid flow, a valve mechanism (14) suitable for loading the administration feeding set (10) to the flow control apparatus (12), and a mounting member (16) adapted suitably for permitting identification of the functional configuration of the administration feeding set (10). Also disclosed is a method for administering fluid...
utilizing the administration feeding set (10). There are also disclosed novel valve mechanisms (14).

The invention relates to a spray head for atomizing a medium with the aid of a pressurized propellant. Said spray head comprises a spray head body (10) encompassing a fastening ring (6) and an actuating element (20) that is movably connected thereto, a holding element (12) encompassing an inlet port (24), an adjacent duct section (26) and a holding section (28), as well as a duct element (14) which is provided with an outlet port (62) for the medium and has such a diameter in at least one section that the medium that is to be discharged atomizes in the propellant flow. The duct element (14) is preferably embodied as a capillary tube or a capillary pipe and/or is provided with a constant diameter along the entire length thereof. The duct element (14) is arranged in the holding section (28) of the holding element (12), preferably at an angle of about 90° relative to said holding section (28) of the holding
element, the holding element (12) being preferably joined to the spray head body (10). Mounting of the inventive spray head is made easier by the fact that the holding element (12) is provided with at least one clamping element (50) for clampingly or lockingly retaining the duct element (14) on the holding element (12), said at least one clamping element (50) being located at least in the holding section (28), especially at the upper end thereof.

An injection device (210) is described. A housing (212) receives a syringe and includes a return spring (226) for biasing the syringe from an extended position in which its needle (218) extends from the housing to a retracted position in which it does not. A drive spring (230) acts on a first drive element (232) and a second drive element (234) acts upon the syringe to advance it from its retracted position to its extended position and discharge its contents through the needle. The first drive element is capable of movement relative to the second once a nominal decoupling position has been reached. A release mechanism is activated when the-first drive element is further advanced to a nominal release position, to release the syringe (214) from the action of the drive spring, whereupon the return spring restores the syringe to its retracted position. A locking mechanism (337, 375) confines the returned syringe in
An injection device (110) is described having a housing (112) that receives a syringe (114) having a needle (118), wherein the syringe is supported in a syringe carrier (150). The syringe and syringe carrier are biased by a return spring (126) from an extended position in which the needle (118) extends from the housing (112) through an exit aperture (128) to a retracted position in which it does not. A drive spring (130) acts via a drive to advance the syringe from its retracted position to its extended position and discharge its contents through the needle and a return spring, brought into play when the drive has reached a nominal return position, restores the syringe to its retracted position.
The invention relates to an impeller (2) for feeding blasting shots, which are to be accelerated, into the centrifugal wheel of a shot blasting system. Said impeller (2) is disposed in the central area of the centrifugal wheel inside a distributing bushing (1), which is provided with a distributing opening (8), and is rotatable in the direction of rotation of the centrifugal wheel. The impeller (2) comprises mainly plate-shaped guiding elements arranged on the distributing bushing (1) and on at least one lateral disk (4) for directing the blasting shots outside. At least two adjacent guiding elements are configured as limbs (5, 6) interconnected to form a single profiled piece (3), wherein adjacent limbs (5, 6) of adjacent profiled pieces (3) form channels through which the blasting shots can be discharged to the outside.

The invention relates to an impeller (2) for feeding blasting shots, which are to be accelerated, into the centrifugal wheel of a shot blasting system. Said impeller (2) is disposed in the central area of the centrifugal wheel inside a distributing bushing (1), which is provided with a distributing opening (8), and is rotatable in the direction of rotation of the centrifugal wheel. The impeller (2) comprises mainly plate-shaped guiding elements arranged on the distributing bushing (1) and on at least one lateral disk (4) for directing the blasting shots outside. At least two adjacent guiding elements are configured as limbs (5, 6) interconnected to form a single profiled piece (3), wherein adjacent limbs (5, 6) of adjacent profiled pieces (3) form channels through which the blasting shots can be discharged to the outside.

The invention relates to an impeller (2) for feeding blasting shots, which are to be accelerated, into the centrifugal wheel of a shot blasting system. Said impeller (2) is disposed in the central area of the centrifugal wheel inside a distributing bushing (1), which is provided with a distributing opening (8), and is rotatable in the direction of rotation of the centrifugal wheel. The impeller (2) comprises mainly plate-shaped guiding elements arranged on the distributing bushing (1) and on at least one lateral disk (4) for directing the blasting shots outside. At least two adjacent guiding elements are configured as limbs (5, 6) interconnected to form a single profiled piece (3), wherein adjacent limbs (5, 6) of adjacent profiled pieces (3) form channels through which the blasting shots can be discharged to the outside.
A method in a plasma processing system for processing a semiconductor substrate is disclosed. The plasma processing system includes a plasma processing chamber and an electrostatic chuck coupled to a bias compensation circuit. The method includes igniting a plasma in a plasma ignition step. Plasma ignition step is performed while a first bias compensation voltage provided by the bias compensation circuit to the chuck is substantially zero and while a first chamber pressure within the plasma processing chamber is below about 90 mTorr. The method further includes processing the substrate in a substrate-processing step after the plasma is ignited. The substrate-processing step employs a second bias compensation voltage provided by the bias compensation circuit that is higher than the first bias compensation voltage and a second chamber pressure substantially equal to the first chamber pressure.
An infusion device (100) comprising an infuser base (105), a cannula (115) and a ferrule (120). The infuser base (105) having a bore (104) extending therethrough, the bore (104) having a distal and proximal ends the proximal end having an inside first diameter. A flange (135) extends radially outward from the cannula proximal end. The cannula (115) is positioned in the bore (104) such that the flange (135) is positioned adjacent the shoulder (109). The ferrule (120) has an insertion portion (122), having an outside second diameter which is substantially equal to the first diameter, and a tapered portion (125) extending from the insertion portion (122). The ferrule (120) is positioned in the bore (104) such that the insertion portion (122) and a portion of the tapered portion (125) are received in the cannula proximal end and the flange (135) is compressed between the shoulder (109) and the tapered portion (125) to define a seal (160) between the cannula (115) and the ferrule (120)
A suction fluid collector includes a transparent reservoir made of a resilient material with an upper opening positioned on one side of a flexible suction bag with at least one transparent side. A plate part made of a resilient material is positioned on another side of the suction bag opposite said reservoir. An urging means arranged between the reservoir and the plate part provides a force tending to expand a gap between the reservoir and the plate part. A suction tube is positioned partially inside the reservoir and extends through the suction bag.

Compounds are disclosed that have the chemical structure of Formula (II) and (IIB) and their prodrug esters and acid-addition salts, and that are useful as Interleukin-1 and Tumor Necrosis Factor-α modulators, and thus are useful in the treatment of various diseases, wherein the R groups are defined in the claims.
An exercise device comprising:

- two containers,
- medium comprising fluidic material to be placed in said containers, and
- a motion mechanism for moving the containers in opposite back and forth motions.

This specification was examined in accordance with regulation 35 of the Patent Regulations, 5728 - 1968.
A method for calibrating the attitude of a compass in relation to the platform on which the compass is installed, the compass comprising an attitude determining device and an optical sighting device, the compass being integrally mounted on a platform, the method comprising:

determining the angle between said optical sighting device and said attitude determining device;

determining the attitude between the optical sighting device and the platform;

determining the attitude between said attitude determining device and said platform;

and

calibrating the attitude of the compass based on the determined attitude between said attitude determining device and said platform.
APPARATUS FOR CONTROLLING THE LEVEL OF ENGINE FLUID

An apparatus for controlling coolant level of a cooling system (10w) of an engine, the apparatus comprising:

- a metering mechanism (26w, 34w, 30w), for metering the coolant level in said cooling system, for indicating absence of coolant in said cooling system;
- an auxiliary coolant reservoir (24w) to said cooling system; and
- a conveying mechanism (32w), for conveying coolant from said auxiliary coolant reservoir, to said cooling system, upon indicating by said metering mechanism absence of coolant in said cooling system.
This specification was examined in accordance with regulation 35 of the Patent Regulations, 5728 - 1968

--

[11][21] 189161

[54] PROCESS FOR PREPARING A 2-NITRO-2'-CARBOXY-DIPHENYLSULFIDE DERIVATIVE

[22] 09.07.1999
[51] Int.Cl.(2009.01) C07D 281/16
[62] DIVISION FROM 147379
[71] AstraZeneca UK Limited, United Kingdom
UBE Industries, Ltd.
[87] WO/2001/004106
[74] S. Horowitz & Co.,
31 Ahad Haam Street
P.O. Box 2499
Tel Aviv 65202

A process for producing dibenzothiazepine derivatives typified by dibenzothiazepin-11-one which are usable as the starting material for producing 11-[4-(2-(2-hydroxyethoxy)ethyl)-1-piperazinyldibenzo[1,4]thiazepine derivatives useful as a psychotropic drug, which comprises reacting a nitrobenzene derivative with a thiosalicylic acid derivative, reducing the thus obtained 2-nitro-2'-carboxy-diphenylsulfide derivative, and then further dehydrating and condensing the thus obtained 2-amino-2'-carboxy-diphenylsulfide derivative.
The invention relates to a method of preparing compounds of formula (1) and to pharmaceutically acceptable salts thereof. The compounds of formula (1) are antibacterial agents that may be used to treat various bacterial and protozoa infections. The invention also relates to pharmaceutical compositions containing the compounds of formula (1) and to methods of treating bacterial protozoa infections by administering the compounds of formula (1). The invention also relates to methods of preparing the compounds of formula (1) and to intermediates useful in such preparation.
The invention relates to novel 4-alkoxy cyclohexane-1 amino carboxylic acid esters of formula (IV) wherein R1 and R2 have the designation cited in the description; intermediate products; and a method for the production of said esters. The invention also relates to the use thereof as intermediate products for the synthesis of insecticide, acaricide and herbicide compounds or pharmaceutical active ingredients.

\[
\begin{align*}
R_1 & \quad \text{NH}_2 \\
& \quad \text{CO}_2R_2 \\
& \text{(IV)}
\end{align*}
\]
a tensile generally planar containment matrix 22 adapted for fastening in juxtaposed, substantially non-connected position with respect to the interior side of the wall construction, having first and second 34 end portions, said containment matrix being operative to flex in the presence of shock waves passing from an exterior side of the wall constructions to the interior side of the wall construction; first connector apparatus for connecting said first end portion of said containment matrix to the first load-bearing structural element; and second connector apparatus for connecting said second end portion of said containment matrix to the second load-bearing structural element via a hinge connection 36.
PATENTS NOT IN FORCE DUE TO NON-PAYMENT OF RENEWAL FEES

<table>
<thead>
<tr>
<th>Patent Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>134051 134073 134982 135159 154597 154721 154862 154878</td>
</tr>
<tr>
<td>154939 154944 155063 155255 155288 155422 155498 155499</td>
</tr>
<tr>
<td>155523 155834 155908 113460 113468 113496 113504 113511</td>
</tr>
<tr>
<td>113516 113523 113525 113526 113552 113572 113577 113585</td>
</tr>
<tr>
<td>113587 113613 113642 113657 113698 113728 113729 113732</td>
</tr>
<tr>
<td>113739 113741 129551 129584 129588 129645 129750 129753</td>
</tr>
<tr>
<td>129807 129817 129834 129842 129856 129861 129971 131308</td>
</tr>
<tr>
<td>97934 97937 97952 97999 98024 98031 98057 98102</td>
</tr>
<tr>
<td>98111 98124 120446 120447 122995 138164 138700 138792</td>
</tr>
<tr>
<td>138868 138944 138996 139056 139059 139214 139216 139256</td>
</tr>
<tr>
<td>139264 139276 139285 139317 139318 139385 139394 139406</td>
</tr>
<tr>
<td>139414 139429 139466 139485 139492 139533 139590 139605</td>
</tr>
<tr>
<td>139615 139661 139680 139710 139711 139753 139817 139885</td>
</tr>
<tr>
<td>139895 140014 140628 141342 160486 127047 143518 162942</td>
</tr>
<tr>
<td>163835 163942 164653 164761 166446</td>
</tr>
</tbody>
</table>

PATENTS RENEWED FOR 20 YEARS

- 168107

PATENTS EXPLORED

<table>
<thead>
<tr>
<th>Patent Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>91336 91353 91368 91370 91391 91416 91431 91435</td>
</tr>
<tr>
<td>91439 91448 91454 91460 91464 91468 91474 91485</td>
</tr>
<tr>
<td>91501 91522 91528 91537 91571 91574 91575 91576</td>
</tr>
<tr>
<td>91591 91593 91607 91612 91627 91628 91630 91642</td>
</tr>
<tr>
<td>91657 91662 91663 91664 91674 91690 91691 91705</td>
</tr>
<tr>
<td>91712 91716 91751 91752 91753 91770 91784 91796</td>
</tr>
<tr>
<td>91819 91820 91831 91850 91855 91869 91882 91889</td>
</tr>
<tr>
<td>91901 91933 91941 91949 91966 92000 92007 92009</td>
</tr>
<tr>
<td>92012 92022 92045 92050 92057 92069 92082 92097</td>
</tr>
</tbody>
</table>

EXTENSION ORDERS RENEWED

- 92208

May 31, 2010

433
NOTICE
Under section 60 of the
Patent Law, 5727-1967
Application has been filed
for the restoration of the
patent recorded below,
which has lapsed through
non-payment of the
prescribed renewal fees:

No. of Patent 136779
Acceptance published in
journal no: 6/2003
Proprietors: MICHAEL LAM

Title of invention: AILERON FOR FIXED WING AIRCRAFT

Any person may oppose the
said application within three
months from the date of this
Patents Journal, as
prescribed by section 61 of
the law and by regulation 92
of the Patent Regulations,
5728-1968

May 31, 2010

"ז" בחודש תשי"ט-נ"ו.
NOTICE

Under section 60 of the Patent Law, 5727-1967

Application has been filed for the restoration of the patent recorded below, which has lapsed through non-payment of the prescribed renewal fees:

No. of Patent: 151545
Proprietors: IBM CORPORATION

Title of invention: METHOD FOR IMAGE BINARIZATION

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968

May 31, 2010
NOTICE

Under section 60 of the Patent Law, 5727-1967

Application has been filed for the restoration of the patent recorded below, which has lapsed through non-payment of the prescribed renewal fees:

No. of Patent: 153888
Proprietors: IBM CORPORATION

Title of invention: SYSTEM AND METHOD FOR ESTABLISHING WIRELESS CONNECTION TO COMPUTER SYSTEM

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968

May 31, 2010

４號公文第 792 号：
NOTICE

Under section 60 of the Patent Law, 5727-1967
Application has been filed for the restoration of the patent recorded below, which has lapsed through non-payment of the prescribed renewal fees:

No. of Patent: 157506
Proprietors: IBM CORPORATION

Title of invention:
METHOD OF FABRICATING LOW-DIELECTRIC CONSTANT INTERLEVEL DIELECTRIC FILMS FOR BEOL INTERCONNECTS WITH ENHANCED ADHESION AND LOW-DEFECT DENSITY

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968
NOTICE
Under section 60 of the Patent Law, 5727-1967
Application has been filed for the restoration of the patent recorded below, which has lapsed through non-payment of the prescribed renewal fees:

No. of Patent: 159655
Acceptance published in journal no: 12/2007
Proprietors: IBM CORPORATION

Title of invention: STRUCTURE AND METHOD OF FABRICATING EMBEDDED VERTICAL DRAM ARRAYS WITH SILICIDED BITLINE AND POLYSILICON INTERCONNECT

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968.
NOTICE

Under section 73 of the Patent Law, 5727-1967
Application has been filed for revocation of the patent recorded below
No. of Patent 123659
Acceptance published in 6/2003
Proprietors:
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC..

Title of invention:
FUSION REACTOR THAT PRODUCES NET POWER FROM THE B-11 REACTION

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 73 of the law.

 slut 73 of the Patent Law, 5727-1967
notice has been filed for revocation of the patent recorded below
No. of Patent 123659
Acceptance published in 6/2003
Proprietors:
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC..

Title of invention:
FUSION REACTOR THAT PRODUCES NET POWER FROM THE B-11 REACTION

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 73 of the law.

 slut 73 of the Patent Law, 5727-1967
notice has been filed for revocation of the patent recorded below
No. of Patent 123659
Acceptance published in 6/2003
Proprietors:
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC..

Title of invention:
FUSION REACTOR THAT PRODUCES NET POWER FROM THE B-11 REACTION

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 73 of the law.
<table>
<thead>
<tr>
<th>Design No.</th>
<th>Class</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>46111</td>
<td>9(07)</td>
<td>POLYCAD INDUSTRIES (1989) LTD. Salt-cellar cap</td>
<td>22.06.2008</td>
</tr>
<tr>
<td>46269</td>
<td>11(01)</td>
<td>NETTA WEINROTH Chain</td>
<td>17.07.2008</td>
</tr>
<tr>
<td>46005</td>
<td>9(03)</td>
<td>BEST CARTON LTD Package</td>
<td>26.05.2008</td>
</tr>
<tr>
<td>Class</td>
<td>Code 1</td>
<td>Code 2</td>
<td>Date</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>45950</td>
<td>11(01)</td>
<td></td>
<td>15.05.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45953</td>
<td>11(01)</td>
<td>45952</td>
<td>15.05.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48466</td>
<td>26(01)</td>
<td>48465</td>
<td>25.10.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45857</td>
<td>8(06)</td>
<td>45848</td>
<td>17.04.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48297</td>
<td>11(02)</td>
<td></td>
<td>09.09.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May 31, 2010
<table>
<thead>
<tr>
<th>Class</th>
<th>Song Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(04)</td>
<td>47906</td>
<td>28.06.2009</td>
</tr>
<tr>
<td>1(01)</td>
<td>47636</td>
<td>05.05.2009</td>
</tr>
<tr>
<td>9(03)</td>
<td>47887</td>
<td>28.06.2009</td>
</tr>
<tr>
<td>23(02)</td>
<td>46242, 46241</td>
<td>10.07.2008</td>
</tr>
<tr>
<td>8(03)</td>
<td>45614</td>
<td>04.03.2008</td>
</tr>
</tbody>
</table>

ITZHAK ISRAEL
AVRAHAM AVIV
Shoe

SHAAR BATSRY
Lolipop

CAESAREA LANDSCAPE DESIGN LTD.
Container for collection of bottles

OZ GUM LTD.
Shower head

RED TOOL BOX LTD.
Electric sander

May 31, 2010
AVI FILO
Liquid container

ELI BARON
Motorcycle lock

LUCK HOLDINGS, INC
Pendant

BODY MEM LTD.
Fence stand

May 31, 2010
46618
Class 8(07)
08.09.2008
NOBEL SECURITY INDUSTRIES LTD.
Laptop lock
גנול תעשיית מונח ב"יד
מונח לשימוש יידי

46651
Class 23(01)
18.09.2008
HAIM AVERBUCH
Apparatus for the improvement of water quality
תanko לשיפור איכות הנוזלים
береж

46725
Class 21(01)
07.10.2008
YALDEI HAHALOMOT LTD.
Doll
ילדי חלאמות ב"י
בובת

46783
Class 3(01)
22.10.2008
LIQUID FIRE TRADE AND INVEST 21 (PTY) LTD
Limb bag
חיק ו.DATE
нятие

47257
Class 14(03)
15.02.2009
MODU LTD.
Mobile phone with speakers
מובייל ב"י
טלפון יידי עם רמקולים

445
May 31, 2010
"י''ת בכסף התשנ''ט."
<table>
<thead>
<tr>
<th>Application Number</th>
<th>Class</th>
<th>Filing Date</th>
<th>Applicant Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>47328, 47327, 47326</td>
<td>8(08)</td>
<td>24.02.2009</td>
<td>PLASTOKIT QUALITY LTD.</td>
<td>Fastening device</td>
</tr>
<tr>
<td>47541</td>
<td>3(01)</td>
<td>16.04.2009</td>
<td>SHUGON BAGS & LEATHERGOODS LTD.</td>
<td>Backpack</td>
</tr>
<tr>
<td>47472</td>
<td>24(02)</td>
<td>22.03.2009</td>
<td>NULENS LTD.</td>
<td>Cartridge for intraocular lens</td>
</tr>
<tr>
<td>47525</td>
<td>23(01)</td>
<td>07.04.2009</td>
<td>PUBLIC ZONE-ALON DRORI DESIGN LTD.</td>
<td>Drinking fountain</td>
</tr>
</tbody>
</table>

May 31, 2010

י"ת הבנייה התש"ע-ט"ו
PUBLIC ZONE-ALON DRORI DESIGN LTD.

Trash bin

PUBLIC ZONE-ALON DRORI DESIGN LTD.

Table

May 31, 2010

יו”ה המסוי התש”ע-יתנא
PUBLIC ZONE-ALON DRORI DESIGN LTD.
Class 6(01) 07.04.2009
PUBLIC ZONE-ALON DRORI DESIGN LTD.
Class 6(01) 07.04.2009

DAVID PEL
Tank for recycling water
06.05.2009

UNI-CHARM CORPORATION
Sanitary mask
24(04) 20.05.2009

ACP
Profile
25(01) 03.06.2009

TAL RONEN
Sandwich wrap
24.06.2009

May 31, 2010

448
<table>
<thead>
<tr>
<th>Class</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(01)</td>
<td>ALU-OZ LTD.</td>
</tr>
<tr>
<td>23(01)</td>
<td>SHIMON GAL</td>
</tr>
<tr>
<td>14(03)</td>
<td>FKA DISTRIBUTING CO., DOING BUSINESS AS HOMEDICS, INC</td>
</tr>
<tr>
<td>11(01)</td>
<td>CHRISTOPHER SLOWINSKI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.06.2009</td>
<td>ALU-OZ LTD.</td>
</tr>
<tr>
<td>01.07.2009</td>
<td>SHIMON GAL</td>
</tr>
<tr>
<td>16.04.2009</td>
<td>FKA DISTRIBUTING CO., DOING BUSINESS AS HOMEDICS, INC</td>
</tr>
<tr>
<td>25.05.2008</td>
<td>CHRISTOPHER SLOWINSKI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 31, 2010</td>
<td>"י"ה בת כיסאן תשמ"ט-נ"ו</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile</th>
<th>Class</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU-OZ LTD.</td>
<td>25(01)</td>
<td>23.06.2009</td>
</tr>
<tr>
<td>SHIMON GAL</td>
<td>23(01)</td>
<td>01.07.2009</td>
</tr>
<tr>
<td>FKA DISTRIBUTING CO., DOING BUSINESS AS HOMEDICS, INC</td>
<td>14(03)</td>
<td>16.04.2009</td>
</tr>
<tr>
<td>CHRISTOPHER SLOWINSKI</td>
<td>11(01)</td>
<td>25.05.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Profile</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(01)</td>
<td>Portable speaker</td>
<td>17.10.2008</td>
</tr>
<tr>
<td>14(03)</td>
<td>Convention date (U.S.A.)</td>
<td>29.04.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile</th>
<th>Class</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU-OZ LTD.</td>
<td>25(01)</td>
<td>23.06.2009</td>
</tr>
<tr>
<td>SHIMON GAL</td>
<td>23(01)</td>
<td>01.07.2009</td>
</tr>
<tr>
<td>FKA DISTRIBUTING CO., DOING BUSINESS AS HOMEDICS, INC</td>
<td>14(03)</td>
<td>16.04.2009</td>
</tr>
<tr>
<td>CHRISTOPHER SLOWINSKI</td>
<td>11(01)</td>
<td>25.05.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Profile</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(01)</td>
<td>Portable speaker</td>
<td>17.10.2008</td>
</tr>
<tr>
<td>14(03)</td>
<td>Convention date (U.S.A.)</td>
<td>29.04.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile</th>
<th>Class</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU-OZ LTD.</td>
<td>25(01)</td>
<td>23.06.2009</td>
</tr>
<tr>
<td>SHIMON GAL</td>
<td>23(01)</td>
<td>01.07.2009</td>
</tr>
<tr>
<td>FKA DISTRIBUTING CO., DOING BUSINESS AS HOMEDICS, INC</td>
<td>14(03)</td>
<td>16.04.2009</td>
</tr>
<tr>
<td>CHRISTOPHER SLOWINSKI</td>
<td>11(01)</td>
<td>25.05.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Profile</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(01)</td>
<td>Portable speaker</td>
<td>17.10.2008</td>
</tr>
<tr>
<td>14(03)</td>
<td>Convention date (U.S.A.)</td>
<td>29.04.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile</th>
<th>Class</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU-OZ LTD.</td>
<td>25(01)</td>
<td>23.06.2009</td>
</tr>
<tr>
<td>SHIMON GAL</td>
<td>23(01)</td>
<td>01.07.2009</td>
</tr>
<tr>
<td>FKA DISTRIBUTING CO., DOING BUSINESS AS HOMEDICS, INC</td>
<td>14(03)</td>
<td>16.04.2009</td>
</tr>
<tr>
<td>CHRISTOPHER SLOWINSKI</td>
<td>11(01)</td>
<td>25.05.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Profile</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(01)</td>
<td>Portable speaker</td>
<td>17.10.2008</td>
</tr>
<tr>
<td>14(03)</td>
<td>Convention date (U.S.A.)</td>
<td>29.04.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile</th>
<th>Class</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU-OZ LTD.</td>
<td>25(01)</td>
<td>23.06.2009</td>
</tr>
<tr>
<td>SHIMON GAL</td>
<td>23(01)</td>
<td>01.07.2009</td>
</tr>
<tr>
<td>FKA DISTRIBUTING CO., DOING BUSINESS AS HOMEDICS, INC</td>
<td>14(03)</td>
<td>16.04.2009</td>
</tr>
<tr>
<td>CHRISTOPHER SLOWINSKI</td>
<td>11(01)</td>
<td>25.05.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Profile</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(01)</td>
<td>Portable speaker</td>
<td>17.10.2008</td>
</tr>
<tr>
<td>14(03)</td>
<td>Convention date (U.S.A.)</td>
<td>29.04.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile</th>
<th>Class</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU-OZ LTD.</td>
<td>25(01)</td>
<td>23.06.2009</td>
</tr>
<tr>
<td>SHIMON GAL</td>
<td>23(01)</td>
<td>01.07.2009</td>
</tr>
<tr>
<td>FKA DISTRIBUTING CO., DOING BUSINESS AS HOMEDICS, INC</td>
<td>14(03)</td>
<td>16.04.2009</td>
</tr>
<tr>
<td>CHRISTOPHER SLOWINSKI</td>
<td>11(01)</td>
<td>25.05.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Profile</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(01)</td>
<td>Portable speaker</td>
<td>17.10.2008</td>
</tr>
<tr>
<td>14(03)</td>
<td>Convention date (U.S.A.)</td>
<td>29.04.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile</th>
<th>Class</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU-OZ LTD.</td>
<td>25(01)</td>
<td>23.06.2009</td>
</tr>
<tr>
<td>SHIMON GAL</td>
<td>23(01)</td>
<td>01.07.2009</td>
</tr>
<tr>
<td>FKA DISTRIBUTING CO., DOING BUSINESS AS HOMEDICS, INC</td>
<td>14(03)</td>
<td>16.04.2009</td>
</tr>
<tr>
<td>CHRISTOPHER SLOWINSKI</td>
<td>11(01)</td>
<td>25.05.2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Profile</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(01)</td>
<td>Portable speaker</td>
<td>17.10.2008</td>
</tr>
<tr>
<td>14(03)</td>
<td>Convention date (U.S.A.)</td>
<td>29.04.2008</td>
</tr>
</tbody>
</table>
COLGATE-PALMOLIVE COMPANY

Toothbrush

Convention date (U.S.A.) 26.11.2008

Class 402

26.05.2009

May 31, 2010

451
<table>
<thead>
<tr>
<th>Application Number</th>
<th>Class</th>
<th>Convention Date</th>
<th>Applicant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>47708</td>
<td>28(03)</td>
<td>24.11.2008</td>
<td>THE GILLETTE COMPANY</td>
<td>Shaving razor cartridge</td>
</tr>
<tr>
<td>47938</td>
<td>14(02)</td>
<td>12.02.2009</td>
<td>SONY COMPUTER ENTERTAINMENT, INC</td>
<td>Arithmetic and control unit</td>
</tr>
<tr>
<td>47962</td>
<td>24(02)</td>
<td>27.01.2009</td>
<td>DIRECTA AB</td>
<td>Dental instrument detail</td>
</tr>
<tr>
<td>47651</td>
<td>14(03)</td>
<td>11.02.2009</td>
<td>SONY ERICSSON MOBILE COMMUNICATIONS AB</td>
<td>Mobile phone</td>
</tr>
</tbody>
</table>

May 31, 2010
VILLEROY & BOCH AG

Tableware set

Convention date (OHIM) 04.02.2008
KONINKLIJKE PHILIPS ELECTRONICS N.V
Drug delivery device
Convention date (OHIM) 01.10.2008

MAVIG GMBH
Clothing for protection against x-rays
Convention date (OHIM) 09.09.2008

PARAGON PRODUCTS B.V
Dog chewing device
Convention date (OHIM) 06.06.2008

HEIC HORBACHNER ENERGIE INNOVATION CONSULTING GMBH
Street lamp
Convention date (OHIM) 22.12.2008

ר"ט בין התש"ע-ינואר 2010
May 31, 2010
47982, 47981

Class 13(03)

13.07.2009

HAGER ELECTRO GMBH & CO.KG

Distribution box

Convention date (OHIM) 04.02.2009

A40H-Electro Телекамера (Адапт.меха)
Class: 23(01)
12.10.2008

FORMASTER S.A

Water filter
Convention date (OHIM) 03.07.2008

May 31, 2010
<table>
<thead>
<tr>
<th>DESIGN SHEET</th>
<th>DESIGN SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>32540</td>
<td>32557</td>
</tr>
<tr>
<td>33088</td>
<td>39096</td>
</tr>
<tr>
<td>39929</td>
<td>40011</td>
</tr>
<tr>
<td>40197</td>
<td>40213</td>
</tr>
<tr>
<td>32558</td>
<td>32561</td>
</tr>
<tr>
<td>39237</td>
<td>40026</td>
</tr>
<tr>
<td>41844</td>
<td></td>
</tr>
<tr>
<td>32582</td>
<td>32625</td>
</tr>
<tr>
<td>39846</td>
<td>40044</td>
</tr>
<tr>
<td>40044</td>
<td></td>
</tr>
<tr>
<td>33001</td>
<td>33002</td>
</tr>
<tr>
<td>39850</td>
<td>40045</td>
</tr>
<tr>
<td>40046</td>
<td></td>
</tr>
<tr>
<td>39902</td>
<td>39905</td>
</tr>
<tr>
<td>39899</td>
<td>40071</td>
</tr>
<tr>
<td>40045</td>
<td></td>
</tr>
<tr>
<td>40071</td>
<td></td>
</tr>
<tr>
<td>39902</td>
<td>40188</td>
</tr>
<tr>
<td>39929</td>
<td>40011</td>
</tr>
<tr>
<td>40046</td>
<td>40071</td>
</tr>
<tr>
<td>41844</td>
<td>40188</td>
</tr>
</tbody>
</table>

DESIGNS RENEWED
Designs Void

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23537</td>
<td>23544</td>
<td>23546</td>
<td>23582</td>
<td>23605</td>
<td>23606</td>
<td>23623</td>
</tr>
<tr>
<td>31452</td>
<td>31458</td>
<td>31460</td>
<td>31469</td>
<td>31475</td>
<td>31502</td>
<td>31504</td>
</tr>
<tr>
<td>31546</td>
<td>31551</td>
<td>31554</td>
<td>31589</td>
<td>36459</td>
<td>39207</td>
<td>39209</td>
</tr>
<tr>
<td>39211</td>
<td>39213</td>
<td>39215</td>
<td>39216</td>
<td>39219</td>
<td>39220</td>
<td>39224</td>
</tr>
<tr>
<td>39249</td>
<td>39250</td>
<td>39252</td>
<td>39253</td>
<td>39254</td>
<td>39255</td>
<td>39256</td>
</tr>
<tr>
<td>39260</td>
<td>39262</td>
<td>39264</td>
<td>39269</td>
<td>39271</td>
<td>39272</td>
<td>39275</td>
</tr>
<tr>
<td>39280</td>
<td>39283</td>
<td>39285</td>
<td>39286</td>
<td>39287</td>
<td>39288</td>
<td>39290</td>
</tr>
<tr>
<td>39293</td>
<td>39299</td>
<td>39300</td>
<td>39301</td>
<td>39304</td>
<td>39305</td>
<td>39309</td>
</tr>
<tr>
<td>39322</td>
<td>39331</td>
<td>39332</td>
<td>39333</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dr. Meir Noam
Commissioner of Patents,
Designs and Trade Marks

י"ח בחזון תש"ט-2010
May 31, 2010
NAME INDEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>אברים_PROD</td>
<td>159717</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>188864</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>131149</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>178867</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>186144</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>163557</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>164114</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>154318</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>174309</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>192597</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>175162</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>156962</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>132049</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>148261</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>162538</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>153291</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>167160</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>138473</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>156853</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>158607</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>151353</td>
</tr>
<tr>
<td>אברים_PROD</td>
<td>150243</td>
</tr>
<tr>
<td>Company Name</td>
<td>Registration Numbers</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>3DFACTO A/S</td>
<td>162627</td>
</tr>
<tr>
<td>3M INNOVATIVE PROPERTIES COMPANY</td>
<td>146486, 170569, 170570, 172740</td>
</tr>
<tr>
<td>A.R. ARENA PRODUCTS, INC.</td>
<td>156984</td>
</tr>
<tr>
<td>ABBOTT LABORATORIES</td>
<td>145395</td>
</tr>
<tr>
<td>ABBOTT LABORATORIES</td>
<td>145536</td>
</tr>
<tr>
<td>ABIC BIOLOGICAL LABORATORIES LTD.</td>
<td>159717</td>
</tr>
<tr>
<td>ABLOY OY</td>
<td>174956</td>
</tr>
<tr>
<td>ACUSPHERE, INC.</td>
<td>146659</td>
</tr>
<tr>
<td>ADC TELECOMMUNICATIONS, INC.</td>
<td>168832</td>
</tr>
<tr>
<td>AE TERN A ZENTARIS GMBH</td>
<td>128331, 153067</td>
</tr>
<tr>
<td>AHARON KRISHEVSKY</td>
<td>188464</td>
</tr>
<tr>
<td>AIR TO WATER TECHNOLOGIES, INC.</td>
<td>166680</td>
</tr>
<tr>
<td>ALCON, INC.</td>
<td>171886, 171887, 171888, 171889, 171890, 171891</td>
</tr>
<tr>
<td>ALLERGAN, INC.</td>
<td>173530</td>
</tr>
<tr>
<td>ALPHAVAX, INC.</td>
<td>169076</td>
</tr>
<tr>
<td>ANGIOTECH INTERNATIONAL AG.</td>
<td>165120</td>
</tr>
<tr>
<td>ANIMAS CORPORATION</td>
<td>180473</td>
</tr>
<tr>
<td>ANSELL HEALTHCARE PRODUCTS LLC</td>
<td>177600</td>
</tr>
<tr>
<td>ANTONIO GARDELLI</td>
<td>143534</td>
</tr>
<tr>
<td>ARAD MEASURING TECHNOLOGIES LTD.</td>
<td>167464</td>
</tr>
<tr>
<td>ARCHER-DANIELS-MIDLAND COMPANY</td>
<td>161244</td>
</tr>
<tr>
<td>ARM LIMITED</td>
<td>165987, 167597, 168453, 168928, 169151</td>
</tr>
<tr>
<td>ARQUELE, INC.</td>
<td>165265</td>
</tr>
<tr>
<td>ASTRAZENECA AB</td>
<td>152284, 152754</td>
</tr>
<tr>
<td>ASTRAZENECA UK LIMITED</td>
<td>189161</td>
</tr>
<tr>
<td>ATEROGENICS, INC.</td>
<td>164568</td>
</tr>
<tr>
<td>ATTAREX LTD.</td>
<td>138475</td>
</tr>
<tr>
<td>AVENTIS PHARMA S.A.</td>
<td>132670, 151211, 154294, 167868</td>
</tr>
<tr>
<td>AVOCENT HUNTSVILLE CORP.</td>
<td>169407</td>
</tr>
<tr>
<td>AZIMUTH TECHNOLOGIES, LTD.</td>
<td>186144</td>
</tr>
<tr>
<td>B.R.A.I.N. BIOTECHNOLOGY RESEARCH AND INFORMATION NETWORK AG.</td>
<td>172312</td>
</tr>
<tr>
<td>BALL CORPORATION</td>
<td>174487</td>
</tr>
<tr>
<td>BASF AKTIENGESELLSCHAFT</td>
<td>163465, 168946</td>
</tr>
<tr>
<td>BASF SE</td>
<td>177777</td>
</tr>
<tr>
<td>BAVARIAN NORDIC A/S</td>
<td>154712</td>
</tr>
<tr>
<td>BAYCO TECH LIMITED</td>
<td>175287</td>
</tr>
<tr>
<td>BAYER CROPSCIENCE AG</td>
<td>156106, 163106, 163792, 173291, 190905</td>
</tr>
<tr>
<td>BAYER SCHERING PHARMA AG</td>
<td>153333</td>
</tr>
<tr>
<td>BAYER SCHERING PHARMA AKTIENGESELLSCHAFT</td>
<td>156282, 170295, 170473</td>
</tr>
<tr>
<td>BAYLOR COLLEGE OF MEDICINE</td>
<td>154544</td>
</tr>
<tr>
<td>BERKSHIRE LABORATORIES, INC.</td>
<td>141797</td>
</tr>
<tr>
<td>BIOGEN IDEC MA INC.</td>
<td>137489</td>
</tr>
<tr>
<td>BIOLEX THERAPEUTICS, INC.</td>
<td>158983</td>
</tr>
<tr>
<td>BIONICHE LIFE SCIENCES INC.</td>
<td>160408</td>
</tr>
<tr>
<td>BIOVITRUM AB</td>
<td>155702</td>
</tr>
<tr>
<td>BOAZ KRISTAL</td>
<td>174309</td>
</tr>
<tr>
<td>BOEHRINGER INGELHEIM INTERNATIONAL GMBH</td>
<td>174496</td>
</tr>
<tr>
<td>BOEHRINGER INGELHEIM</td>
<td>179027</td>
</tr>
<tr>
<td>MICROPARTS GMBH</td>
<td>179027</td>
</tr>
<tr>
<td>BOEHRINGER INGELHEIM PHARMA GMB & CO. KG</td>
<td>160389</td>
</tr>
<tr>
<td>BRISTOL-MYERS SQUIBB COMPANY</td>
<td>155612</td>
</tr>
<tr>
<td>BRISTOL-MYERS SQUIBB PHARMA</td>
<td></td>
</tr>
</tbody>
</table>

460

May 31, 2010

י"ה בכסיו הʼתשנ"ט

159973

185387

רפורמָיל שְׁרוֹת לְפִיטְחַת אֲמַעְצָה לְחֵזֶה בְּעֵין

שלמה ייסבגרר – 185387

159973
GIOACCHINO COPPI - 143534
GIOVANNI PASSONI - 177804
GIVEN IMAGING LTD. - 156962
GLAXO GROUP LIMITED - 164108
GLENGOWAN B.V. - 178131
GR INTELLECTUAL RESERVE, LLC. - 141797
H. LUNDBECK A/S - 159326, 170194
HANMI PHARM. CO., LTD. - 167725
HEE Kwon Rho - 170232
HITOSHI ABE - 178316
HK PHARMACEUTICALS, INC. - 187592
HONEYWELL INTERNATIONAL INC. - 174089, 175507
HUBERT KOSTER - 187592
HUGHES ELECTRONICS CORPORATION - 154657, 154658
HYGLOS INVEST GMBH - 165390
i - FLOW CORPORATION - 156190
ICON GENETICS, INC. - 151479
ICX GLOBAL, INC. - 168562
IMMUNEX CORPORATION - 140937
IMMUNOCELLULAR THERAPEUTICS, LTD - 148113, 155611
IMPRESS GROUP B.V. - 178567
INCA DIGITAL PRINTERS LIMITED - 172625
INCONTINENT CONTROL DEVICES - 161019
INDENA S.P.A. - 170200
INDUSTRIAL ORIGAMI, INC. - 167655
INDUSTRIAL ORIGAMI, LLC. - 167655
INHIBITEX, INC. - 157041
INEXERM - 151211
INSTITUTO DE BIOTECHNOLOGIA-UNAM - 142516
INTARCIA THERAPEUTICS, INC. - 161889
INTERDIGITAL TECHNOLOGY CORPORATION - 165044
INTERNATIONAL PATENT OWNERS (CAYMAN) LIMITED - 175591
ISRAEL MILITARY INDUSTRIES LTD. - 167287
ITT MANUFACTURING ENTERPRISES, INC. - 164435
JANSSEN PHARMACEUTICA N.V. - 159819, 160329
JANSSEN PHARMACEUTICA, N.V. - 157752
JAPAN AS REPRESENTED BY PRESIDENT OF NATIONAL CARDIOVASCULAR CENTER - 166572
JEAN-FRANCOIS DURETTE, OCULARISTE INC. - 175462
JEMTEX INK JET PRINTING LTD. - 132049
JORDAN L. HOLTZMAN - 142852
JORDAN LOYAL HOLTZMAN - 153058
JOST WADEPHUL - 180214
K.U. LEUVEN RESEARCH & DEVELOPMENT - 142516
KAKUCHI SHIOMI - 178316
KAO CORPORATION - 161244
KARL MAYER TEXTILMASCHINENFABRIK GMBH - 176593
KEELE UNIVERSITY - 162652
KENNETH D. FINE - 151570
KIMBERLY-CLARK WORLDWIDE, INC. - 175548
KING PHARMACEUTICALS RESEARCH & DEVELOPMENT, INC. - 161608
KLIL INDUSTRIES LTD. - 153317
KOREA KUMNHO PETROCHEMICAL CO., LTD. - 140090
L.P.T. TECHNOLOGIES LTD. - 175234
LABORATOIRE DE CONTACTOLOGIE APPLIQUEE-LCA - 178836
LAM RESEARCH CORPORATION - 167625, 170851, 176466, 180388
LG ELECTRONICS INC. - 161837
LIAN KEHAT ADV. AS AN OFFICIAL RECEIVER - 174309
LIAT DE-VRIES - 174309
LIFECORE BIOMEDICAL INC. - 178624
LOCKHEED MARTIN CORPORATION - 162335

May 31, 2010

462
LOMA LINDA UNIVERSITY - 126126
LOOK DYNAMICS, INC. - 163016
LTS LOHMANN THERAPIE-SYSTEME AG - 173309
LUIDIA, INC. - 154790
MACTAC EUROPE S.A. - 176379
MARTIN E. GLEAVE - 166657
MEDIGENE AG - 161625
MEDIGUS LTD. - 162187
MEIR AVGANIM - 161135
MELLANOX TECHNOLOGIES LTD. - 148261
MICHAEL NAUMOV - 175162
MICHiko OKIYAMA - 178316
MICHiko TAKAOKA - 178316
MICROSEMI CORP - ANALOG MIXED SIGNAL GROUP LTD - 164458
MICROSOFT CORPORATION - 147472, 162057
MICROSOFT CORPORATION - 159337
MIKKEL G. MANDT - 178656
MOLECULAR DISCOVERIES, L.L.C. - 148113, 155611
MORDECHAI ELDAR - 162538
MOTOROLA, INC. - 169235
MOTOROLA, INC. - 175501
MUL-T-LOCK TECHNOLOGIES LTD. - 155823, 166688
MUL-T-LOCK TECHNOLOGIES LTD. - 175231
NEREUS PHARMACEUTICALS, INC. - 182272
NEW YORK UNIVERSITY - 137489
NIPPON SHERWOOD MEDICAL INDUSTRIES LTD - 180922
NIR PADAN - 153291
NOBIL BIO RICERCHE S.R.L. - 175287
NOKIA CORPORATION - 164097
NOVA MEASURING INSTRUMENTS LTD. - 153894
NOVARTIS AG - 149142, 174082
NSAB, FILIAL AF NEUROSEARCH SWEDEN AB, SVERIGE - 150350
OCTAGENE GMBH - 151857
OFFICINE MACCAFERRI S.P.A. - 167291
OLYMPIC TECHNOLOGIES LIMITED - 169766
OMEGA FLEX, INC. - 170983
ONCONOVA THERAPEUTICS, INC. - 157541
ORION CORPORATION - 168882
OSCIENT PHARMACEUTICALS CORPORATION - 152654
OSCILLON LTD. - 131149
OSRAM SYLVANIA INC. - 166996
OSRO GMBH - 172219
PESSACH SEIDEL - 156853
PFIZER PRODUCTS, INC. - 142631, 163277, 173363, 189430
PHARMA MAR S.A., SOCIEDAD UNIPERSONAL - 154155
PHARMA MAR, S.A. - 153682, 155297
PHARMACIA CORPORATION - 158209
PIONEER CORPORATION - 173609
PREMIUM INGREDIENTS, S.L. - 164013
PROFOS AG - 165390
PROTONEX TECHNOLOGY CORPORATION - 170365
QUALCOMM INCORPORATED - 152215, 155778, 163186, 167437, 171309
QUALCOMM INCORPORATED - 167299, 168800
RAFAEL ADVANCED DEFENSE SYSTEMS LTD. - 150243
RAFAEL ADVANCED DEFENSE SYSTEMS LTD. - 159973
RAYTHEON COMPANY - 157123
RAYTHEON COMPANY - 161127
RAYTHEON COMPANY - 165658
REINHARD VOEHRINGER - 161538
REM TECHNOLOGIES, INC. - 172219
RESEARCH DEVELOPMENT FOUNDATION - 141613
RHODIA POLYAMIDE INTERMEDIATES - 157427
RHODIANYL - 146295
ROBARTS RESEARCH INSTITUTE - 146295

463

May 31, 2010
162130
ROBERTO BENEDINI - 143534
ROXTEC AB - 172558
S.A.E. AFIKIM MILKING SYSTEMS - AGRICULTURAL COOPERATIVE LTD - 174751
S.S.C.I. INC. - 169762
SACHEM INC. - 175261
SAES GETTERS S.P.A. - 173224
SANDBIK INTELLECTUAL PROPERTY AB - 171509
SANOFI-AVENTIS - 161533
SANOFI-AVENTIS - 168133, 176478
SANOFI-AVENTIS DEUTSCHLAND GMBH - 153818, 156214, 160556
SANOFI-AVENTIS DEUTSCHLAND GMBH - 157793
SANOFI-AVENTIS DEUTSCHLAND GMBH - 164901, 165319
SANOFI-AVENTIS DEUTSCHLAND GMBH - 170480
SANOFI-SYNTHELABO OTC SPA - 159807
SARAH HERZOG MEMORIAL HOSPITAL EZRAT NASHIM ASSOCIATION - 154318
SARGENT MANUFACTURING COMPANY - 177485, 177517, 177521
SASOL NORTH AMERICA INC. - 163582
SCHERING CORPORATION - 152414
SDU IDENTIFICATION B.V. - 170407
SEPRACOR INC. - 141531
SHELL INTERNATIONALE RESEARCH MAATSCHAPPI B.V. - 158427
SHERWOOD SERVICES AG - 178949, 180922
SHIPLEY COMPANY, L.L.C. - 176787
SHLOMO WEISBERGER - 185387
SILVERBROOK RESEARCH PTY. LTD. - 166921
SILVERBROOK RESEARCH PTY. LTD. - 155466, 155471, 156089, 157239
SINCLAIR SYSTEMS INTERNATIONAL, LLC - 177220
SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH - 159371
SMARTLIFE TECHNOLOGY LIMITED - 171734
SOLVAY GMBH - 167924
SOLVAY PHARMACEUTICALS B.V. - 168258
SOLVIAS AG - 173713
SOLVIAS AG - 175771
SONIC MOBILITY INC. - 169407
SOPRO - 177469
SOREQ NUCLEAR RESEARCH CENTER - 158907
SPEEDEL PHARMA AG - 170626
SPINECORE, INC. - 161136
SPIRAL SOLUTIONS LTD - 167160
SUMITOMO CHEMICAL COMPANY, LIMITED. - 165588
SUSUMU KOBAYASHI - 178316
TADAHIRO OHMI - 165326
TAIYO NIPPON SANSO CORPORATION - 165326
TBW INDUSTRIES, INC. - 177026
TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD. - 168728
TECPHARMA LICENSING AG - 159664, 159665
TEMPLE UNIVERSITY OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION - 157541
TEN CATE ADVANCED TEXTILES B.V. - 174227
THALES - 170140
THE BIOLOGICAL RESEARCH CENTER OF THE HUNGARIAN ACADEMY OF SCIENCES - 126126
THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY - 156973
THE DIRECTV GROUP, INC. - 164482
THE GOVERNMENT OF MALAYSIA GOVERNMENT ADMINISTRATIVE CENTRE 62502 PUTRAJAYA MALAYSIA - 163714
THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY...
OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES - 147446, 147447
THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES - 142231
THE KENNETH S. WARREN INSTITUTE, INC. - 145865
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA - 182272
THE SCHRIPPS RESEARCH INSTITUTE - 141941
THE TEXAS A&M UNIVERSITY SYSTEM - 155228
THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA - 166274
THE UNIVERSITY OF BRITISH COLUMBIA - 154529
THE UNIVERSITY OF BRITISH COLUMBIA - 166657
THE WATER COMPANY - 166680
TODD C. STECKLER - 172446
TORBEN BOGH-ANDERSEN - 164926
TRELLIS BIOINFORMATICS, INC. - 141759
TRIMEDYNE, INC. - 169270
U.S. ARMY MEDICAL RESEARCH AND MATERIAL COMMAND - 146193
UBE INDUSTRIES, LTD. - 189161
ULTRADENT PRODUCTS INC. - 171855
UNI-CHEMICAL CORPORATION - 145822
UNITED STATES GYPSUM COMPANY - 177390
UNIVERSIDAD DE BARCELONA - 154155
UNIVERSITY OF MICHIGAN - 168453, 168457
UNIVERSITY OF SYDNEY - 162557
UNIVERSITY OF TECHNOLOGY SYDNEY - 159177
URI MARTINOVITZ - 178867
VACU VIN INNOVATIONS LTD. - 169498
VERTEX PHARMACEUTICALS INCORPORATED - 163117
VICTORIA'S SECRET STORES BRAND MANAGEMENT, INC. - 177775
VICURON PHARMACEUTICALS INC. - 166476
VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE V.Z.W (VIB) - 142516
VLADIMIR N. FILATOV - 178867
VLADIMIR RYLTSEV - 178867
WISCONSIN ALUMNI RESEARCH FOUNDATION - 121243
WOVEN ELECTRONICS CORPORATION, A SOUTH CAROLINA CORPORATION - 171785
WYETH LLC - 165265
WYETH HOLDINGS CORPORATION - 142231
WYETH LLC - 174198
YAACOV KOLCHEH - 166321
YEDA RESEARCH AND DEVELOPMENT CO. LTD. - 157550
YITZHAK WEISSMAN - 169556
ZAMIR MANOR - 151353
ZIDKITYAHU SIMENHAUS - 178867
ZOHR ELINSKI - 158601
ZON - I P LTD - 167160
ZULI HOLDINGS LTD. - 131149

May 31, 2010

י"ה מסוי של התש"ע-ט, 2010
<table>
<thead>
<tr>
<th>A01G</th>
<th>158601, 161538, 162538</th>
<th>B01F</th>
<th>177804</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01H</td>
<td>142516, 151479</td>
<td>B01J</td>
<td>172740</td>
</tr>
<tr>
<td>A01J</td>
<td>174751</td>
<td>B05D</td>
<td>175287</td>
</tr>
<tr>
<td>A01N</td>
<td>157752, 163106, 163465, 163792, 172446, 173291</td>
<td>B07C</td>
<td>172431</td>
</tr>
<tr>
<td>A23C</td>
<td>145395</td>
<td>B21D</td>
<td>167655, 174487, 178567</td>
</tr>
<tr>
<td>A23L</td>
<td>164013</td>
<td>B23B</td>
<td>177334</td>
</tr>
<tr>
<td>A41C</td>
<td>177775</td>
<td>B23K</td>
<td>180388</td>
</tr>
<tr>
<td>A41D</td>
<td>177600</td>
<td>B24B</td>
<td>172219</td>
</tr>
<tr>
<td>A47L</td>
<td>148582</td>
<td>B24C</td>
<td>180214</td>
</tr>
<tr>
<td>A61B</td>
<td>162187, 171734, 171886, 171887, 171888, 171889, 171890, 171891, 175591, 177469, 178131, 178316, 171985, 172523, 178624, 171886, 171887, 171888, 171889, 171890, 171891, 178131, 178316</td>
<td>A61F</td>
<td>161136</td>
</tr>
<tr>
<td>A61K</td>
<td>137489, 138473, 141531, 142231, 145895, 146659, 147446, 147447, 149282, 152317, 153058, 153333, 153656, 154318, 155611, 156282, 159807, 160389, 161147, 161193, 161533, 161889, 163277, 164417, 166274, 166657, 167725, 167924, 169762, 170200, 170295, 170355, 170473, 170626, 170864, 173078, 174198, 174496, 177777, 178836</td>
<td>A61O</td>
<td>180922</td>
</tr>
<tr>
<td>A61L</td>
<td>161625</td>
<td>B65B</td>
<td>173309</td>
</tr>
<tr>
<td>A61M</td>
<td>123646, 143534, 159664, 159665, 161019, 170480, 178949, 179549, 179551, 180473</td>
<td>B65C</td>
<td>177720</td>
</tr>
<tr>
<td>A61N</td>
<td>156190</td>
<td>B65D</td>
<td>156984, 165341, 169498, 170232, 174309, 179027</td>
</tr>
<tr>
<td>A63B</td>
<td>147715</td>
<td>B65H</td>
<td>157239</td>
</tr>
<tr>
<td>A01G</td>
<td>141797, 166572</td>
<td>B81B</td>
<td>166921</td>
</tr>
<tr>
<td>A01H</td>
<td>175234, 185387</td>
<td>C01B</td>
<td>165362</td>
</tr>
<tr>
<td>A01J</td>
<td>165120</td>
<td>C01G</td>
<td>166996</td>
</tr>
<tr>
<td>A01N</td>
<td>123646, 143534, 159664, 159665, 161019, 170480, 178949, 179549, 179551, 180473</td>
<td>C02F</td>
<td>178656</td>
</tr>
<tr>
<td>A01O</td>
<td>161625</td>
<td>C07B</td>
<td>145536</td>
</tr>
<tr>
<td>A01P</td>
<td>123646, 143534, 159664, 159665, 161019, 170480, 178949, 179549, 179551, 180473</td>
<td>C07C</td>
<td>157541, 158209, 160527, 162652, 163582, 164568, 165265, 168946, 182272, 190905</td>
</tr>
<tr>
<td>A01Q</td>
<td>161625</td>
<td>C07D</td>
<td>108328, 131561, 142959, 146486, 150350, 152284, 152754, 153067, 153682, 154155, 155702, 156106, 156214, 159326, 160329, 160556, 163117, 164108, 164901, 165052, 165519, 165588, 168133, 168258, 168343, 168882, 169368, 170194, 171522, 173363, 173530, 173745, 174082, 174734, 176478, 189161</td>
</tr>
<tr>
<td>A01R</td>
<td>161625</td>
<td>C07D</td>
<td>161015</td>
</tr>
<tr>
<td>Code</td>
<td>Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C07F</td>
<td>155612, 173713, 175771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C07H</td>
<td>142631, 157793, 161608, 166476, 168475, 189430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C07K</td>
<td>128331, 140937, 141613, 148113, 149142, 154006, 154544, 155297, 157041, 157550, 158246, 175906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C08B</td>
<td>132670, 167868</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C08F</td>
<td>162557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C08G</td>
<td>146295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C08L</td>
<td>157427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11C</td>
<td>161244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12M</td>
<td>158983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12N</td>
<td>121243, 126126, 135607, 144467, 151211, 151857, 154294, 154529, 154712, 156111, 156973, 159371, 159717, 162130, 169076, 171680, 172312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12Q</td>
<td>152414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12P</td>
<td>165559</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22B</td>
<td>170569, 170570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22C</td>
<td>171509, 173224, 17687</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40B</td>
<td>153818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D04B</td>
<td>176593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D04H</td>
<td>175548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E01F</td>
<td>155228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E01H</td>
<td>151353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E02D</td>
<td>167291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E03D</td>
<td>166321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E04H</td>
<td>167287, 192597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E05B</td>
<td>155823, 161135, 174956, 175231, 177485, 177517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E05B</td>
<td>166688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E05C</td>
<td>177521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E05D</td>
<td>155018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E06B</td>
<td>153317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E21B</td>
<td>158427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F01C</td>
<td>176736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F01K</td>
<td>156853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F01P</td>
<td>188464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F16L</td>
<td>170983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F25B</td>
<td>166680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F25D</td>
<td>156089</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F41G</td>
<td>153291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F41H</td>
<td>159973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F42C</td>
<td>169766</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01B</td>
<td>153894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01C</td>
<td>175162, 186144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01J</td>
<td>175507</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01M</td>
<td>150243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01N</td>
<td>141759, 142852, 151570, 152654, 156962, 159819, 160249, 165390, 187592</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01R</td>
<td>140090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01S</td>
<td>158097, 161127, 164926, 167437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G02B</td>
<td>169270, 169556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G02F</td>
<td>163016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G06F</td>
<td>147472, 154790, 161338, 162057, 162627, 165987, 167160, 168453, 168832, 168928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G06K</td>
<td>155471, 163714, 174089</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G06Q</td>
<td>159337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G06T</td>
<td>170140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G08B</td>
<td>162371, 171785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G08C</td>
<td>168562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G11B</td>
<td>173609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G11C</td>
<td>154657, 154658, 167597, 169151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H01J</td>
<td>157123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H01L</td>
<td>131149, 167625, 170851, 175261, 176466, 177026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H01M</td>
<td>170365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H01Q</td>
<td>162335, 167464, 175501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H01R</td>
<td>164458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H01S</td>
<td>168728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H02G</td>
<td>172558</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H03D</td>
<td>171309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H03M</td>
<td>165658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H04B</td>
<td>164482, 168800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H04J</td>
<td>163557, 164097, 169071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H04L</td>
<td>148261, 152215, 164114, 169235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H04N</td>
<td>164435, 165044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H04Q</td>
<td>155778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H04Q</td>
<td>163186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Country or Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Argentina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Herzegovina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>Ecuador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>European Patent Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT</td>
<td>Guatemala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>Croatia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MX</td>
<td>Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MY</td>
<td>Malaysia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>The Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>Thailand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW</td>
<td>Taiwan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UY</td>
<td>Uruguay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>World Intellectual Property Organization (W.I.P.O.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZA</td>
<td>South Africa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May 31, 2010
EDITED BY THE PATENT OFFICE, MINISTRY OF JUSTICE, JERUSALEM
PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>108371</td>
</tr>
<tr>
<td>132898</td>
</tr>
<tr>
<td>137581</td>
</tr>
<tr>
<td>141643</td>
</tr>
<tr>
<td>146613</td>
</tr>
<tr>
<td>150010</td>
</tr>
<tr>
<td>151474</td>
</tr>
<tr>
<td>152671</td>
</tr>
<tr>
<td>153589</td>
</tr>
<tr>
<td>155056</td>
</tr>
<tr>
<td>156949</td>
</tr>
<tr>
<td>157381</td>
</tr>
<tr>
<td>158266</td>
</tr>
<tr>
<td>158485</td>
</tr>
<tr>
<td>159211</td>
</tr>
<tr>
<td>160487</td>
</tr>
<tr>
<td>161042</td>
</tr>
<tr>
<td>161476</td>
</tr>
<tr>
<td>162389</td>
</tr>
<tr>
<td>163203</td>
</tr>
<tr>
<td>164344</td>
</tr>
<tr>
<td>166159</td>
</tr>
<tr>
<td>167981</td>
</tr>
<tr>
<td>169924</td>
</tr>
<tr>
<td>171418</td>
</tr>
<tr>
<td>177417</td>
</tr>
</tbody>
</table>

PATENTS RENEWED

<table>
<thead>
<tr>
<th>Patent Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>99962</td>
</tr>
<tr>
<td>100322</td>
</tr>
<tr>
<td>100390</td>
</tr>
<tr>
<td>100449</td>
</tr>
<tr>
<td>114028</td>
</tr>
<tr>
<td>111619</td>
</tr>
<tr>
<td>111624</td>
</tr>
<tr>
<td>186734</td>
</tr>
</tbody>
</table>

Patents Not in Force Due to Non-Payment of Renewal Fees

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>97934</td>
<td>97937</td>
<td>97952</td>
<td>97999</td>
<td>98024</td>
<td>98031</td>
<td>98057</td>
<td>98102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98111</td>
<td>98124</td>
<td>113460</td>
<td>113468</td>
<td>113496</td>
<td>113504</td>
<td>113511</td>
<td>113516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113523</td>
<td>113525</td>
<td>113526</td>
<td>113552</td>
<td>113572</td>
<td>113577</td>
<td>113585</td>
<td>113587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113513</td>
<td>113642</td>
<td>113657</td>
<td>113698</td>
<td>113728</td>
<td>113729</td>
<td>113732</td>
<td>113739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113741</td>
<td>120446</td>
<td>120447</td>
<td>122995</td>
<td>127047</td>
<td>129551</td>
<td>129584</td>
<td>129588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129645</td>
<td>129750</td>
<td>129753</td>
<td>129807</td>
<td>129817</td>
<td>129834</td>
<td>129842</td>
<td>129856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129861</td>
<td>129971</td>
<td>131308</td>
<td>134051</td>
<td>134073</td>
<td>134982</td>
<td>135159</td>
<td>138164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138700</td>
<td>138792</td>
<td>138868</td>
<td>138944</td>
<td>138996</td>
<td>139056</td>
<td>139059</td>
<td>139214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139216</td>
<td>139256</td>
<td>139264</td>
<td>139276</td>
<td>139285</td>
<td>139317</td>
<td>139318</td>
<td>139385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139394</td>
<td>139406</td>
<td>139414</td>
<td>139429</td>
<td>139466</td>
<td>139485</td>
<td>139492</td>
<td>139533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139590</td>
<td>139605</td>
<td>139615</td>
<td>139661</td>
<td>139680</td>
<td>139710</td>
<td>139711</td>
<td>139753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139817</td>
<td>139885</td>
<td>139895</td>
<td>140014</td>
<td>140628</td>
<td>141342</td>
<td>143518</td>
<td>154597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154721</td>
<td>154862</td>
<td>154878</td>
<td>154939</td>
<td>154944</td>
<td>155063</td>
<td>155255</td>
<td>155288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155422</td>
<td>155498</td>
<td>155499</td>
<td>155523</td>
<td>155834</td>
<td>155908</td>
<td>160486</td>
<td>162942</td>
<td></td>
<td></td>
</tr>
<tr>
<td>163835</td>
<td>163942</td>
<td>164653</td>
<td>164761</td>
<td>166446</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patents Renewed for 20 Years

168107

Extension Orders Renewed

92208

Patents Expired

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91336</td>
<td>91353</td>
<td>91368</td>
<td>91370</td>
<td>91391</td>
<td>91416</td>
<td>91431</td>
<td>91435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91439</td>
<td>91448</td>
<td>91454</td>
<td>91460</td>
<td>91464</td>
<td>91468</td>
<td>91474</td>
<td>91485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91501</td>
<td>91522</td>
<td>91528</td>
<td>91537</td>
<td>91571</td>
<td>91574</td>
<td>91575</td>
<td>91576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91591</td>
<td>91593</td>
<td>91607</td>
<td>91612</td>
<td>91627</td>
<td>91628</td>
<td>91630</td>
<td>91642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91657</td>
<td>91662</td>
<td>91663</td>
<td>91664</td>
<td>91674</td>
<td>91690</td>
<td>91691</td>
<td>91705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91712</td>
<td>91716</td>
<td>91751</td>
<td>91752</td>
<td>91753</td>
<td>91770</td>
<td>91784</td>
<td>91796</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91819</td>
<td>91820</td>
<td>91831</td>
<td>91850</td>
<td>91855</td>
<td>91869</td>
<td>91882</td>
<td>91889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91901</td>
<td>91933</td>
<td>91941</td>
<td>91949</td>
<td>91966</td>
<td>92000</td>
<td>92007</td>
<td>92009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92012</td>
<td>92022</td>
<td>92045</td>
<td>92050</td>
<td>92057</td>
<td>92069</td>
<td>92082</td>
<td>92097</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTICE

Under section 60 of the Patent Law, 5727-1967

Application has been filed for the restoration of the patent recorded below, which has lapsed through non-payment of the prescribed renewal fees:

No. of Patent: 151545

Proprietors: IBM CORPORATION

Title of invention: METHOD FOR IMAGE BINARIZATION

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968

May 31, 2010
NOTICE

Under section 60 of the Patent Law, 5727-1967
Application has been filed for the restoration of the patent recorded below, which has lapsed through non-payment of the prescribed renewal fees:

No. of Patent: 153888
Proprietors: IBM CORPORATION

Title of invention: SYSTEM AND METHOD FOR ESTABLISHING WIRELESS CONNECTION TO COMPUTER SYSTEM

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968

May 31, 2010

IBM CORPORATION
NOTICE

Under section 60 of the Patent Law, 5727-1967
Application has been filed for the restoration of the patent recorded below, which has lapsed through non-payment of the prescribed renewal fees:

No. of Patent 157506
Proprietors: IBM CORPORATION

Title of invention:
METHOD OF FABRICATING LOW-DIELECTRIC CONSTANT INTERLEVEL DIELECTRIC FILMS FOR BEOL INTERCONNECTS WITH ENHANCED ADHESION AND LOW-DEFECT DENSITY

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968

IBM CORPORATION

 Kardash
לפז סתקח 60 לוחק
תפטנימ, תשכ”ו-1967
הרגשה מספר לודזור תוקף
של תפטנימ המפורט מטה.
שחרוקפ פיקר ממרחט أي
הספרוא ארוגה וחידשו
הקורעת:
 molec. פנטניר
כיבול פרוס יומן מט: שם בול הפטניר

Method of fabricating low-dielectric constant interlevel dielectric films for BEOL interconnects with enhanced adhesion and low-defect density

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968

IBM CORPORATION
NOTICE

Under section 60 of the Patent Law, 5727-1967

Application has been filed for the restoration of the patent recorded below, which has lapsed through non-payment of the prescribed renewal fees:

No. of Patent: 159655
Acceptance published in journal no: 12/2007
Proprietors: IBM CORPORATION

Title of invention:
STRUCTURE AND METHOD OF FABRICATING EMBEDDED VERTICAL DRAM ARRAYS WITH SILICIDED BITLINE AND POLYSILICON INTERCONNECT

Any person may oppose the said application within three months from the date of this Patents Journal, as prescribed by section 61 of the law and by regulation 92 of the Patent Regulations, 5728-1968.

IBM CORPORATION
CHANGES IN PARTICULARS ENTERED IN REGISTER

NAME INDEX

157550 ידיד מתקד姞 בוליוניניה ב"ע מ" – 159717
166321 ינקב קוליציה – 188464
169556 יזרק יסאנס – 178867
174309 לאה וד פיט – 186144
161135 מואיר אדנור – 178867
162187 מורד ביני מ – 163557
166688 מولاتלניק תבורגלנסקי ב"ע מ – 164114
155823 מولاتלניק תבורגלנסקי ב"ע מ – 163557
175231 מוסט מוהננה ב"ע מ – 168728
175162 מרבא אוגנוב – 167464
148261 מרקוס טונלונניק ב"ע מ – 154318
162538 מרביק ארלינור – 174309
153894 ניר מד – 174309
153291 וייס – 188464
167160 ספירל סולשטייב ב"ע מ – 155809
174309 ע"ד ליאן קוה גולאר ב"ע מ – 156853
138473 עטרף ב"ע מ – 155809

131149 בורלה לנה י鲴ג פינק – 167160
151533 בורלה פינק – 167160

May 31, 2010
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Registration Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOVITRUM AB</td>
<td>155702</td>
</tr>
<tr>
<td>BOAZ KRISTAL</td>
<td>174309</td>
</tr>
<tr>
<td>BOEHRINGER INGELHEIM INTERNATIONAL GMBH</td>
<td>174496</td>
</tr>
<tr>
<td>BOEHRINGER INGELHEIM MICROPARTS GMBH</td>
<td>160389</td>
</tr>
<tr>
<td>BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG</td>
<td>155612</td>
</tr>
<tr>
<td>BRISTOL-MYERS SQUIBB COMPANY</td>
<td>172446</td>
</tr>
<tr>
<td>BRISTOL-MYERS SQUIBB PHARMA COMPANY</td>
<td>142959</td>
</tr>
<tr>
<td>BROOK CHANDLER MURPHY</td>
<td>161990</td>
</tr>
<tr>
<td>CANCER RESEARCH CAMPAIGN TECHNOLOGY LIMITED</td>
<td>108328</td>
</tr>
<tr>
<td>CAPROTEC BIOANALYTICS GMBH</td>
<td>187592</td>
</tr>
<tr>
<td>CENTRO DE INMUNOLOGIA MOLECULAR</td>
<td>158246, 170355</td>
</tr>
<tr>
<td>CEPHALON, INC.</td>
<td>161015</td>
</tr>
<tr>
<td>CERATIZIT AUSTRIA GESELLSCHAFT M.B.H</td>
<td>177334</td>
</tr>
<tr>
<td>CERVITECH, INC.</td>
<td>173137, 178204</td>
</tr>
<tr>
<td>CHROMOS MOLECULAR SYSTEMS, INC.</td>
<td>126126</td>
</tr>
<tr>
<td>CIBO N.V.</td>
<td>177846</td>
</tr>
<tr>
<td>CILAG GMBH INTERNATIONAL</td>
<td>179549, 179551</td>
</tr>
<tr>
<td>COLEY PHARMACEUTICAL GROUP, INC.</td>
<td>146486</td>
</tr>
<tr>
<td>COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION</td>
<td>160249</td>
</tr>
<tr>
<td>CONTAINER DEVELOPMENT, LTD.</td>
<td>174487</td>
</tr>
<tr>
<td>CORINDUS LTD.</td>
<td>123646</td>
</tr>
<tr>
<td>COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH</td>
<td>155123</td>
</tr>
<tr>
<td>CREIGHTON UNIVERSITY</td>
<td>152654</td>
</tr>
<tr>
<td>CRUCELL HOLLAND B.V.</td>
<td>171680</td>
</tr>
<tr>
<td>CSL BEHRING AG</td>
<td>154006</td>
</tr>
<tr>
<td>CYTOS BIOTECHNOLOGY AG</td>
<td>161147</td>
</tr>
<tr>
<td>DAIICHI SANKYO COMPANY LIMITED</td>
<td>168475</td>
</tr>
<tr>
<td>DART INDUSTRIES INC.</td>
<td>165341</td>
</tr>
<tr>
<td>DCA DESIGN INTERNATIONAL LIMITED</td>
<td>170480</td>
</tr>
<tr>
<td>DESIGN TECHNOLOGY AND IRRIGATION LIMITED</td>
<td>147715</td>
</tr>
<tr>
<td>DEUTSCHE POST AG</td>
<td>172431</td>
</tr>
<tr>
<td>DIRECT COMPUTER RESOURCES, INC.</td>
<td>161338</td>
</tr>
<tr>
<td>DMATEK LTD.</td>
<td>162371</td>
</tr>
<tr>
<td>DORMA GMBH + CO.KG</td>
<td>155018</td>
</tr>
<tr>
<td>DSM IP ASSETS B.V.</td>
<td>165529</td>
</tr>
<tr>
<td>DUANE KELLER</td>
<td>172523</td>
</tr>
<tr>
<td>E.I. DU PONT DE NEMOURS AND COMPANY</td>
<td>147715, 165502</td>
</tr>
<tr>
<td>ECI TELECOM LTD.</td>
<td>163557</td>
</tr>
<tr>
<td>ECI TELECOM LTD.</td>
<td>163557, 164114, 169071</td>
</tr>
<tr>
<td>EGIS GYOGYSZERGYAR RT.</td>
<td>171522</td>
</tr>
<tr>
<td>EISAI CO., LTD.</td>
<td>155612</td>
</tr>
<tr>
<td>EISAI R&D MANAGEMENT CO., LTD.</td>
<td>155612</td>
</tr>
<tr>
<td>ELBIT SYSTEMS ELECTRO-OPTICS ELOP LTD</td>
<td>168728</td>
</tr>
<tr>
<td>ELECTRONIC NAVIGATION RESEARCH INSTITUTE AN INDEPENDENT ADMINISTRATIVE INSTITUTION</td>
<td>178316</td>
</tr>
<tr>
<td>ELECTRONICS FOR IMAGING, INC.</td>
<td>154790</td>
</tr>
<tr>
<td>ELTHOM ENTERPRISES LIMITED</td>
<td>176736</td>
</tr>
<tr>
<td>EMORY UNIVERSITY</td>
<td>173745</td>
</tr>
<tr>
<td>EPICEPT CORPORATION</td>
<td>153656</td>
</tr>
<tr>
<td>ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE)</td>
<td>176455</td>
</tr>
<tr>
<td>ETET EX CORPORATION</td>
<td>174198</td>
</tr>
<tr>
<td>ETHYPHARM</td>
<td>152317</td>
</tr>
<tr>
<td>EURO-CELTIQUE S.A.</td>
<td>131561</td>
</tr>
<tr>
<td>EVONIK ROHM GMBH</td>
<td>175078</td>
</tr>
<tr>
<td>F. HOFFMANN-LA ROCHE AG</td>
<td>144467</td>
</tr>
<tr>
<td>F. HOFFMANN-LA ROCHE AG</td>
<td>160527</td>
</tr>
<tr>
<td>F. HOFFMANN-LA ROCHE AG</td>
<td>168343, 169368, 174734</td>
</tr>
<tr>
<td>FEC CO., LTD.</td>
<td>163714</td>
</tr>
</tbody>
</table>

May 31, 2010

"זה מביא תשוע"-וי
FERRING B.V. - 161193
FMC CORPORATION - 149282
FRACTURE CODE CORPORATION APS - 162334

G.G. DEFENSE SYSTEMS LTD - 192597
GE HEALTHCARE LIMITED - 170864
GENENTECH, INC. - 135607, 156111, 164417, 175906
GEORGE KAUMOV - 175162
GERON CORPORATION - 162130
GILEAD SCIENCES, INC. - 173745
GIOACCHINO COPPI - 143534
GIOVANNI PASSONI - 177804
GIVEN IMAGING LTD. - 156962
GLAXO GROUP LIMITED - 164108
GLEAVE, MARTIN, E. - 166657
GLEWONGAN B.V. - 178131
GR INTELLECTUAL RESERVE, LLC. - 141797

H. LUNDBECK A/S - 159326, 170194
HANMI PHARM. CO., LTD. - 167725
HEE KWON RHO - 170232
HITOSHI ABE - 178316
HK PHARMACEUTICALS, INC. - 187592
HONEYWELL INTERNATIONAL INC. - 174089, 175507
HUBERT KOSTER - 187592
HUGHES ELECTRONICS CORPORATION - 154657, 154658

I - FLOW CORPORATION - 156190
ICON GENETICS, INC. - 151479
ICX GLOBAL, INC. - 168562
IMMUNEX CORPORATION - 140937
IMMUNOCYTHERAPEUTICS, LTD - 148113, 155611
IMPRESS GROUP B.V. - 178567
INCA DIGITAL PRINTERS LIMITED - 172625
INCONTINENT CONTROL DEVICES - 161019
INDENA S.P.A. - 170200
INDUSTRIAL ORIGAMI, LLC. - 167655
INDUSTRIAL ORIGAMI, LLC. - 167655
INHIBITEX, INC. - 157041

INSERM - 151211
INSTITUTO DE BIOTECNOLOGIA-UNAM - 142516
INTARCIA THERAPEUTICS, INC. - 161889
INTERDIGITAL TECHNOLOGY CORPORATION - 165044
INTERNATIONAL PATENT OWNERS (CAYMAN) LIMITED - 175591
ISRAEL MILITARY INDUSTRIES LTD. - 167287
ITT MANUFACTURING ENTERPRISES, INC. - 164435

JANSSEN PHARMACEUTICA N.V. - 159819, 160329
JANSSEN PHARMACEUTICA, N.V. - 157752
JAPAN AS REPRESENTED BY PRESIDENT OF NATIONAL CARDIOVASCULAR CENTER - 166572
JEAN-FRANCOIS DURETTE, OCULARISTE INC. - 175462
JEMTEX INK JET PRINTING LTD. - 132049
JORDAN L. HOLTZMAN - 142852
JORDAN LOYAL HOLTZMAN - 153058
JOST WADEPHUL - 180214
K.U. LEUVEN RESEARCH & DEVELOPMENT - 142516
KAKUICHI SHIOMI - 178316
KAO CORPORATION - 161244
KARL MAYER TEXTILMASCHINENFABRIK GMBH - 176593
KEELE UNIVERSITY - 162652
KENNETH D. FINE - 151570
KING PHARMACEUTICALS RESEARCH & DEVELOPMENT, INC. - 175548
KOREA KUMNHO PETROCHEMICAL CO., LTD. - 140900

May 31, 2010

людванة المشت.
L.P.T. TECHNOLOGIES LTD. - 175234
LABORATOIRE DE CONTACTOLOGIE APPLIQUEE-LCA - 178836
LAM RESEARCH CORPORATION - 167625, 170851, 176466, 180388
LG ELECTRONICS INC. - 161837
LIAN KEHAT ADV. AS AN OFFICIAL RECIVER - 174309
LIAT DE-VRIES - 174309
LIFECORE BIOMEDICAL INC. - 178624
LOCKEED MARTIN CORPORATION - 162335
LOMA LINDA UNIVERSITY - 126126
LOOK DYNAMICS, INC. - 163016
LTS LOHMANN THERAPIE-SYSTEME AG - 173309
LUIDIA, INC. - 154790
MACTAC EUROPE S.A. - 176379
MEDIGENE AG - 161625
MEDIGUS LTD. - 162187
MEIR AVGANIM - 161135
MELLANOX TECHNOLOGIES LTD. - 148261
MICHAEL NAUMOV - 175162
MICHIKO OKIYAMA - 178316
MICHIKO TAKAOKA - 178316
MICROSEMI CORP - ANALOG MIXED SIGNAL GROUP LTD - 164458
MICROSOFT CORPORATION - 147472, 162057
MICROSOFT CORPORATION - 159337
MICROTECH MEDICAL TECHNOLOGIES LTD. - 131149
MIKKEL G. MANDT - 178656
MOLECULAR DISCOVERIES, L.L.C. - 148113, 155611
MORDÉCHAI ELDAR - 162538
MOTOROLA, INC. - 169235
MOTOROLA, INC. - 175501
MULT-T-LOCK TECHNOLOGIES LTD. - 155823, 166688
MULT-T-LOCK TECHNOLOGIES LTD. - 175231
NEREUS PHARMACEUTICALS, INC. - 182272
NEW YORK UNIVERSITY - 137489
NIPPON SHERWOOD MEDICAL INDUSTRIES LTD - 180922
NIR PADAN - 153291
NOBIL BIO RICERCHE S.R.L. - 175287
NOKIA CORPORATION - 164097
NOVA MEASURING INSTRUMENTS LTD. - 153894
NOVARTIS AG - 149142, 174082
NSAB, FILIAL AF NEUROSEARCH SWEDEN AB, SVERIGE - 150350
OCTAGENE GMBH - 151857
OFFICINE MACCAFERRI S.P.A. - 167291
OLYMPIC TECHNOLOGIES LIMITED - 169766
OMEGA FLEX, INC. - 170983
ONCONOVA THERAPEUTICS, INC. - 157541
ORION CORPORATION - 168882
OSCIENT PHARMACEUTICALS CORPORATION - 152654
OSRAN SYLVANIA INC. - 166996
OSRO GMBH - 172219
PESSACH SEIDEL - 156853
PFIZER PRODUCTS, INC. - 142631, 163277, 173363, 189430
PHARMA MAR S.A., SOCIEDAD UNIPERSONAL - 154155
PHARMA MAR, S.A. - 153682, 155297
PHARMACIA CORPORATION - 158209
PIONEER CORPORATION - 173609
PREMIUM INGREDIENTS, S.L. - 164013
PROFOS AG - 165390
PROTONEX TECHNOLOGY CORPORATION - 170365
QUALCOMM INCORPORATED - 152215, 155778, 163186, 167437, 171309
QUALCOMM INCORPORATED - 167299, 168800
RAFAEL ADVANCED DEFENSE SYSTEMS LTD - 159973
RAFAEL ADVANCED DEFENSE

May 31, 2010

2010 ה"ט בכסלו ה'תש"ע
SYSTEMS LTD. - 150243
RAYTHEON COMPANY - 157123
RAYTHEON COMPANY - 161127
RAYTHEON COMPANY - 165658
REINHARD VOEHRINGER - 161538
REM TECHNOLOGIES, INC. - 172219
RESEARCH DEVELOPMENT FOUNDATION - 141613
RHODIA POLYAMIDE INTERMEDIATES - 157427
RHODIANYL - 146295
ROBARTS RESEARCH INSTITUTE - 162130
ROBERTO BENEDINI - 143534
ROXTEC AB - 172558
S.A.E. AFIKIM- COMPUTERIZED DAIRY MANAGEMENT SYSTEMS - 174751
S.S.C.I. INC. - 169762
SAES GETTERS S.P.A. - 173224
SANOFI-AVENTIS - 161533
SANOFI-AVENTIS - 168133, 176478
SANOFI-AVENTIS DEUTSCHLAND GMBH - 153818, 156214, 160556
SANOFI-AVENTIS DEUTSCHLAND GMBH - 157793
SANOFI-AVENTIS DEUTSCHLAND GMBH - 164901, 165519
SANOFI-AVENTIS DEUTSCHLAND GMBH - 170480
SANOFI-SYNTHELABO OTC SPA - 159807
SARAH HERZOG MEMORIAL HOSPITAL EZRAT NASHIM ASSOCIATION - 154318
SARGENT MANUFACTURING COMPANY - 177485, 177517, 177521
SASOL NORTH AMERICA INC. - 163582
SCHERING CORPORATION - 152414
SDU IDENTIFICATION B.V. - 170407
SEPRACOR INC. - 141531
SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. - 158427
SHERWOOD SERVICES AG - 178949, 180922
SHIPLEY COMPANY, L.L.C. - 176787
SHLOMO WEISBERGER - 185387
SILVERBROOK RESEARCH PTY. LTD. - 166921
SILVERBROOK RESEARCH PTY. LTD. - 155466, 155471, 156089, 157239
SINCLAIR SYSTEMS INTERNATIONAL, LLC - 177720
SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH - 159371
SMARTLIFE TECHNOLOGY LIMITED - 171734
SOLVAY GMBH - 167924
SOLVAY PHARMACEUTICALS B.V. - 168258
SOLVIAS AG - 173713
SOLVIAS AG - 175771
SONIC MOBILITY INC. - 169407
SOPRO - 177469
SOREQ NUCLEAR RESEARCH CENTER - 158097
SPEEDEL PHARMA AG - 170626
SPINECORE, INC. - 161136
SPIRAL SOLUTIONS LTD. - 167160
SUMITOMO CHEMICAL COMPANY, LIMITED. - 165588
SUSUMU KOBAYASHI - 178316
TADAHIRO OHMI - 165326
TAYO NIPPON SANSO CORPORATION - 165326
TBW INDUSTRIES, INC. - 177026
TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD. - 168728
TECPHARMA LICENSING AG - 159664, 159665
TEMPLE UNIVERSITY OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION - 157541
TEN CATE ADVANCED TEXTILES B.V. - 174272
THALES - 170140
THE BIOLOGICAL RESEARCH CENTER OF THE HUNGARIAN

482

May 31, 2010

 pérdida de datos
ACADEMY OF SCIENCES - 126126
THE BOARD OF TRUSTEES OF THE
LELAND STANFORD JUNIOR
UNIVERSITY - 156973
THE DIRECTV GROUP, INC. - 164482
THE GOVERNMENT OF MALAYSIA
GOVERNMENT ADMINISTRATIVE
CENTRE 62502 PUTRAJAYA
MALAYSIA - 163714
THE GOVERNMENT OF THE UNITED
STATES OF AMERICA AS
REPRESENTED BY THE SECRETARY
OF THE DEPARTMENT OF HEALTH
AND HUMAN SERVICES - 147446 ,
147447
THE GOVERNMENT OF THE UNITED
STATES OF AMERICA AS
REPRESENTED BY THE UNIFORMED
SERVICES UNIVERSITY OF THE
HEALTH SCIENCES - 142231
THE KENNETH S. WARREN
INSTITUTE, INC. - 145895
THE REGENTS OF THE UNIVERSITY
OF CALIFORNIA - 182272
THE SCRIPPS RESEARCH INSTITUTE -
149142
THE TEXAS A&M UNIVERSITY
SYSTEM - 155228
THE TRUSTEES OF THE UNIVERSITY
OF PENNSYLVANIA - 166274
THE UNIVERSITY OF BRITISH
COLUMBIA - 154529
THE UNIVERSITY OF BRITISH
COLUMBIA - 166657
THE WATER COMPANY - 166680
TODD C. STECKLER - 172446
TORBEN BOGH-ANDERSEN - 164926
TRELLIS BIOINFORMATICS, INC. -
141759
TRIMEDYNE, INC. - 169270
U.S. ARMY MEDICAL RESEARCH AND
MATERIEL COMMAND - 146193
UBE INDUSTRIES, LTD. - 189161
ULTRADENT PRODUCTS INC. - 171855
UNI-CHARM CORPORATION - 148582
UNITED STATES GYPSUM COMPANY -
177390
UNIVERSIDAD DE BARCELONA -
154155
UNIVERSITY OF MICHIGAN - 168453 ,
168928 , 169151
UNIVERSITY OF SYDNEY - 162557
UNIVERSITY OF TECHNOLOGY
SYDNEY - 159717
URI MARTINOVIDT - 178867
VACU VIN INNOVATIONS LTD. -
169498
VERTEX PHARMACEUTICALS
INCORPORATED - 163117
VICTORIA'S SECRET STORES BRAND
MANAGEMENT, INC. - 177775
VICURON PHARMACEUTICALS INC. -
166476
VLAAMS INTERUNIVERSITAIR
INSTITUUT VOOR BIOTECHNOLOGIE
V.Z.W (VIB) - 142516
VLADIMIR N. FILATOV - 178867
VLADIMIR RYLTSEV - 178867
WISCONSIN ALUMNI RESEARCH
FOUNDATION - 121243
WOVEN ELECTRONICS
CORPORATION, A
SOUTH CAROLINA CORPORATION -
171785
WYETH LLC - 165265
WYETH HOLDINGS CORPORATION -
142231
WYETH LLC - 174198
YAACOV KOLCHEH - 166321
YEDA RESEARCH AND
DEVELOPMENT CO. LTD. - 157550
YITZHAK WEISSMAN - 169556
ZAMIR MANOR - 151353
ZIDKIYAHU SIMENHAUS - 178867
ZOHAR ELINSKI - 158601
ZON - I P LTD - 167160
ZULI HOLDINGS LTD. - 131149

May 31, 2010

いただくための御承知。
<table>
<thead>
<tr>
<th>SUBJECT MATTER INDEX</th>
<th>מפתונים עיוניים</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01G - 158601, 161538, 162538</td>
<td>A61M - 156190</td>
</tr>
<tr>
<td>A01H - 142516, 151479</td>
<td>A61N - 141797, 166572</td>
</tr>
<tr>
<td>A01J - 174751</td>
<td>A63B - 175234, 185387</td>
</tr>
<tr>
<td>A01N - 157752, 163106, 163465, 163792, 172446, 173291</td>
<td>B01D - 147715</td>
</tr>
<tr>
<td>A23C - 145935</td>
<td>B01F - 177804</td>
</tr>
<tr>
<td>A23L - 164013</td>
<td>B01I - 172740</td>
</tr>
<tr>
<td>A41C - 177775</td>
<td>B05D - 175287</td>
</tr>
<tr>
<td>A41D - 177600</td>
<td>B07C - 172431</td>
</tr>
<tr>
<td>A47L - 148582</td>
<td>B21D - 167655, 174487, 178567</td>
</tr>
<tr>
<td>A61B - 162187, 171734, 171886, 171887, 171888, 171891, 175591, 177469, 178131, 178316</td>
<td>B23B - 177334</td>
</tr>
<tr>
<td>A61C - 171855, 172523, 178624</td>
<td>B23K - 180388</td>
</tr>
<tr>
<td>A61F - 161136</td>
<td>B24B - 172219</td>
</tr>
<tr>
<td>A61F - 173137, 175462, 178204, 178836</td>
<td>B24C - 180214</td>
</tr>
<tr>
<td>A61J - 180922</td>
<td>B24D - 177846</td>
</tr>
<tr>
<td>A61K - 131561, 137489, 138473, 141531, 142231, 145895, 146659, 147446, 147447, 149282, 152317, 153058, 153333, 153656, 154318, 155611, 156282, 159807, 160389, 161147, 161193, 161533, 161889, 163277, 164417, 166274, 166657, 167725, 167924, 169762, 170200, 170295, 170355, 170473, 170626, 170864, 173078, 174198, 174496, 177777, 178867</td>
<td>B28C - 177390</td>
</tr>
<tr>
<td>A61K - 161625</td>
<td>B29D - 176455</td>
</tr>
<tr>
<td>A61L - 165120</td>
<td>B31D - 176379</td>
</tr>
<tr>
<td>A61M - 123646, 143534, 159664, 159665, 161019, 170480, 178949, 179549, 179551, 180473</td>
<td>B41J - 132049, 172625, 174272</td>
</tr>
<tr>
<td>A61M - 156190</td>
<td>B41M - 162334</td>
</tr>
<tr>
<td>A61N - 141797, 166572</td>
<td>B42D - 170407</td>
</tr>
<tr>
<td>A63B - 175234, 185387</td>
<td>B65B - 173309</td>
</tr>
<tr>
<td>B01D - 147715</td>
<td>B65C - 177720</td>
</tr>
<tr>
<td>B01F - 177804</td>
<td>B65D - 156984, 165341, 169498, 170232, 174309, 179027</td>
</tr>
<tr>
<td>B01I - 172740</td>
<td>B65H - 157239</td>
</tr>
<tr>
<td>B05D - 175287</td>
<td>B81B - 166921</td>
</tr>
<tr>
<td>B07C - 172431</td>
<td>C01B - 165326</td>
</tr>
<tr>
<td>B21D - 167655, 174487, 178567</td>
<td>C01G - 166996</td>
</tr>
<tr>
<td>B23B - 177334</td>
<td>C02F - 178656</td>
</tr>
<tr>
<td>B23K - 180388</td>
<td>C07B - 145536</td>
</tr>
<tr>
<td>B24B - 172219</td>
<td>C07C - 157541, 158209, 160527, 162652, 163582, 164568, 165265, 168946, 182272, 190905</td>
</tr>
<tr>
<td>B24C - 180214</td>
<td>C07D - 108328, 142959, 146486, 150350, 152284, 152754, 153067, 153682, 154155</td>
</tr>
</tbody>
</table>

May 31, 2010
<table>
<thead>
<tr>
<th>Classification</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>H02G</td>
<td>172558</td>
</tr>
<tr>
<td>H03D</td>
<td>171309</td>
</tr>
<tr>
<td>H03M</td>
<td>165658</td>
</tr>
<tr>
<td>H04B</td>
<td>164482, 168800</td>
</tr>
<tr>
<td>H04J</td>
<td>163557, 164097, 169071</td>
</tr>
<tr>
<td>H04L</td>
<td>148261, 152215, 164114, 169235</td>
</tr>
<tr>
<td>H04N</td>
<td>164435, 165044</td>
</tr>
<tr>
<td>H04Q</td>
<td>155778</td>
</tr>
<tr>
<td>H04Q</td>
<td>163186</td>
</tr>
<tr>
<td>H04W</td>
<td>161837, 167299, 169407</td>
</tr>
<tr>
<td>H05K</td>
<td>155466</td>
</tr>
<tr>
<td>Code</td>
<td>Country or Organization</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>AR</td>
<td>Argentina</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
</tr>
<tr>
<td>BA</td>
<td>Herzegovina</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>EC</td>
<td>Ecuador</td>
</tr>
<tr>
<td>EP</td>
<td>European Patent Office</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>GT</td>
<td>Guatemala</td>
</tr>
<tr>
<td>HR</td>
<td>Croatia</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>IN</td>
<td>India</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>487</td>
<td></td>
</tr>
</tbody>
</table>
LU Luxembourg
LV Latvia

EDITED BY THE PATENT OFFICE, MINISTRY OF JUSTICE, JERUSALEM